Skip to main content

Advertisement

Log in

A Synergic Fabrication of Chitosan-Coated Salinomycin-Loaded Hydroxyapatite Potential Nanocarriers for the Treatment of Liver Cancer

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

There are numerous possible implications of nanotechnology in cancer therapy. To improve the therapeutic benefits of anticancer drugs nano-delivery systems (NDS) have been established with significant solubility, degradability and cytocompatibility. These NDS are the result of several advantages that high-performance nanoparticles hydroxyapatite (HA) advance rapidly in specific cancer treatments. Salinomycin is a pharmaceutical drug that serves to suppress tumour cells and the growth of many cancers as a chemical inhibitor. Nevertheless, Salinomycin’s low bioavailability is the main challenge to be used. In this work, HA chitosan-coated nanoparticles were utilised to enhance the efficiency and availability of Salinomycin as a pH-sensitive biopolymer. HA nanoparticles were initially produced using the sol-gel technique for this purpose. Then a coating of chitosan was coated with the nanocarrier under regulated circumstances, and the salinomycin medicine was encapsulated. For the characterization of nanocarriers were employed techniques such as scanning electron microscopy, X-ray diffraction, and Fourier transformations infrared spectroscopy. Different bioassays have tested nano-drugs developed in the second part. In this connection, we examined the cytotoxicity rate of the hepatocellular carcinoma HepG2 and Caco-2 by the MTT assay and the apoptosis induction rate by ethidium bromide and acridine orange staining method. It has been established that histological analysis is very suitable for nanomedicine, which does not cause apparent stress like swelling and inflammation organs of the mouse. The findings could offer solid evidence for nanoparticles’ apoptotic cell death mechanism and a novel cancer therapy approach.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS (2015) Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 3:939–958. https://doi.org/10.1039/C4TB01611D

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Dong C, Jiang K, Zhang S, Long F, Zhang R, Sun D, Liang R, Gao Z, Shao S, Wang L (2018) Fluorescence imaging of hepatocellular carcinoma with a specific probe of COX-2. RSC Adv 8:994–1000. https://doi.org/10.1039/C7RA07819F

    Article  CAS  Google Scholar 

  3. Rajasekaran D, Srivastava J, Ebeid K, Gredler R, Akiel M, Jariwala N, Robertson CL, Shen X-N, Siddiq A, Fisher PB, Salem AK, Sarkar D (2015) Combination of nanoparticle-delivered siRNA for astrocyte elevated gene-1 (AEG-1) and all-trans retinoic acid (ATRA): an effective therapeutic strategy for hepatocellular carcinoma (HCC). Bioconjug Chem 26:1651–1661. https://doi.org/10.1021/acs.bioconjchem.5b00254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang X, Gao Q, Zhuang Q, Zhang L, Wang S, Du L, Yuan W, Wang C, Tian Q, Yu H, Zhao Y, Liu Y (2021) A dual-functional nanovehicle with fluorescent tracking and its targeted killing effects on hepatocellular carcinoma cells. RSC Adv 11:10986–10995. https://doi.org/10.1039/D0RA10486H

    Article  CAS  Google Scholar 

  5. Bondì ML, Scala A, Sortino G, Amore E, Botto C, Azzolina A, Balasus D, Cervello M, Mazzaglia A (2015) Nanoassemblies based on supramolecular complexes of nonionic amphiphilic cyclodextrin and sorafenib as effective weapons to kill human HCC cells. Biomacromolecules 16:3784–3791. https://doi.org/10.1021/acs.biomac.5b01082

    Article  CAS  PubMed  Google Scholar 

  6. Zhang B-C, Luo B-Y, Zou J-J, Wu P-Y, Jiang J-L, Le J-Q, Zhao R-R, Chen L, Shao J-W (2020) Co-delivery of sorafenib and CRISPR/Cas9 based on targeted core–shell hollow mesoporous organosilica nanoparticles for synergistic HCC therapy. ACS Appl Mater Interfaces 12:57362–57372. https://doi.org/10.1021/acsami.0c17660

    Article  CAS  PubMed  Google Scholar 

  7. Sun T, Han J, Liu S, Wang X, Wang ZY, Xie Z (2019) Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano 13:7345–7354. https://doi.org/10.1021/acsnano.9b03910

    Article  CAS  PubMed  Google Scholar 

  8. Chan C, Guo N, Duan X, Han W, Xue L, Bryan D, Wightman SC, Khodarev NN, Weichselbaum RR, Lin W (2019) Systemic miRNA delivery by nontoxic nanoscale coordination polymers limits epithelial-to-mesenchymal transition and suppresses liver metastases of colorectal cancer. Biomaterials 210:94–104. https://doi.org/10.1016/j.biomaterials.2019.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670. https://doi.org/10.1016/j.addr.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  10. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-responsive drug release from smart polymers. J Funct Biomater. https://doi.org/10.3390/jfb10030034

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao H, Xu J, Wan J, Geng S, Li H, Peng X, Fu Q, He M, Zhao Y, Yang X (2017) Cisplatin-directed coordination-crosslinking nanogels with thermo/pH-sensitive triblock polymers: improvement on chemotherapic efficacy via sustained release and drug retention. Nanoscale 9:5859–5871. https://doi.org/10.1039/C7NR01097D

    Article  CAS  PubMed  Google Scholar 

  12. Duan Y, Li K, Wang H, Wu T, Zhao Y, Li H, Tang H, Yang W (2020) Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr Polym 238:116195. https://doi.org/10.1016/j.carbpol.2020.116195

    Article  CAS  PubMed  Google Scholar 

  13. Banerjee SL, Samanta S, Sarkar S, Singha NK (2019) A self-healable and antifouling hydrogel based on PDMS centered ABA tri-block copolymer polymersomes: a potential material for therapeutic contact lenses. J Mater Chem B. https://doi.org/10.1039/c9tb00949c

    Article  PubMed  Google Scholar 

  14. Prajapati SK, Jain A, Jain A, Jain S (2019) Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J 120:109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018

    Article  CAS  Google Scholar 

  15. Xu L, Cheng L, Wang C, Peng R, Liu Z (2014) Conjugated polymers for photothermal therapy of cancer. Polym Chem 5:1573–1580. https://doi.org/10.1039/C3PY01196H

    Article  CAS  Google Scholar 

  16. Luo Z, Xiao A, Chen G, Guo Q, Chang C, Zeng A, Fu Q (2019) Preparation and application of molecularly imprinted polymers for the selective extraction of naringin and genistein from herbal medicines. Anal Methods 11:4890–4898. https://doi.org/10.1039/C9AY01503E

    Article  CAS  Google Scholar 

  17. Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57:490–500. https://doi.org/10.1007/s11426-014-5086-y

    Article  CAS  Google Scholar 

  18. Motskin M, Müller KH, Genoud C, Monteith AG, Skepper JN (2011) The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment. Biomaterials 32:9470–9482. https://doi.org/10.1016/j.biomaterials.2011.08.060

    Article  CAS  PubMed  Google Scholar 

  19. Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y (2019) Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C 97:325–335. https://doi.org/10.1016/j.msec.2018.12.027

    Article  CAS  Google Scholar 

  20. Muthu D, Gowri M, Suresh Kumar G, Kattimani VS, Girija EK (2019) Repurposing of antidepression drug sertraline for antimicrobial activity against Staphylococcus aureus: a potential approach for the treatment of osteomyelitis. New J Chem 43:5315–5324. https://doi.org/10.1039/C8NJ06297H

    Article  CAS  Google Scholar 

  21. Henstock JR, Canham LT, Anderson SI (2015) Silicon: the evolution of its use in biomaterials. Acta Biomater 11:17–26. https://doi.org/10.1016/j.actbio.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  22. Depan D, Pesacreta TC, Misra RDK (2014) The synergistic effect of a hybrid graphene oxide–chitosan system and biomimetic mineralization on osteoblast functions. Biomater Sci 2:264–274. https://doi.org/10.1039/C3BM60192G

    Article  CAS  PubMed  Google Scholar 

  23. Türk S, Altınsoy I, Efe G, Ipek M, Özacar M, Bindal C (2021) A novel multifunctional NCQDs-based injectable self-crosslinking and in situ forming hydrogel as an innovative stimuli responsive smart drug delivery system for cancer therapy. Mater Sci Eng C 121:111829. https://doi.org/10.1016/j.msec.2020.111829

    Article  CAS  Google Scholar 

  24. Karimi T, Barati D, Karaman O, Moeinzadeh S, Jabbari E (2015) A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration. Integr Biol 7:112–127. https://doi.org/10.1039/C4IB00197D

    Article  Google Scholar 

  25. Liu T-Y, Huang TC (2011) A novel drug vehicle capable of ultrasound-triggered release with MRI functions. Acta Biomater 7:3927–3934. https://doi.org/10.1016/j.actbio.2011.06.038

    Article  CAS  PubMed  Google Scholar 

  26. Rostamian M, Kalaee MR, Dehkordi SR, Panahi-Sarmad M, Tirgar M, Goodarzi V (2020) Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: the promising candidate for soft tissue engineering. Eur Polym J 138:109985. https://doi.org/10.1016/j.eurpolymj.2020.109985

    Article  CAS  Google Scholar 

  27. Cao Y, Tan YF, Wong YS, Liew MWJ, Venkatraman S (2019) Recent advances in chitosan-based carriers for gene delivery. Mar Drugs. https://doi.org/10.3390/md17060381

    Article  PubMed  PubMed Central  Google Scholar 

  28. Depan D, Venkata Surya PKC, Girase B, Misra RDK (2011) Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater 7:2163–2175. https://doi.org/10.1016/j.actbio.2011.01.029

    Article  CAS  PubMed  Google Scholar 

  29. Pirsa S, Karimi Sani I, Pirouzifard MK, Erfani A (2020) Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Addit Contam Part A 37:634–648. https://doi.org/10.1080/19440049.2020.1716079

    Article  CAS  Google Scholar 

  30. Sudheesh Kumar PT, Lakshmanan V-K, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing. in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629. https://doi.org/10.1021/am300292v

    Article  CAS  Google Scholar 

  31. Wang Z, Zhao Z, Khan NR, Hua Z, Huo J, Li Y (2020) Microwave assisted chitosan-polyethylene glycol hydrogel membrane synthesis of curcumin for open incision wound healing. Pharmazie 75:118–123. https://doi.org/10.1691/ph.2020.9179

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Q, Shah J, Hein S, Misra RDK (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6:1140–1148. https://doi.org/10.1016/j.actbio.2009.08.027

    Article  CAS  PubMed  Google Scholar 

  33. Depan D, Misra RDK (2013) The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure–function property relationship. Acta Biomater 9:6084–6094. https://doi.org/10.1016/j.actbio.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  34. Chen G, Zhao Y, Xu Y, Zhu C, Liu T, Wang K (2020) Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int J Pharm 589:119763. https://doi.org/10.1016/j.ijpharm.2020.119763

    Article  CAS  PubMed  Google Scholar 

  35. Wang K, Buschle-Diller G, Misra RDK (2015) Chitosan-based injectable hydrogels for biomedical applications. Mater Technol 30:B198–B205. https://doi.org/10.1179/17535557B15Y.000000008

    Article  CAS  Google Scholar 

  36. Maurstad G, Stokke BT, Vårum KM, Strand SP (2013) PEGylated chitosan complexes DNA while improving polyplex colloidal stability and gene transfection efficiency. Carbohydr Polym 94:436–443. https://doi.org/10.1016/j.carbpol.2013.01.015

    Article  CAS  PubMed  Google Scholar 

  37. Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A (2019) Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. https://doi.org/10.3390/biom9090470

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bruining MJ, Blaauwgeers HGT, Kuijer R, Pels E, Nuijts RMMA, Koole LH (2000) Biodegradable three-dimensional networks of poly(dimethylamino ethyl methacrylate). Synthesis, characterization and in vitro studies of structural degradation and cytotoxicity. Biomaterials 21:595–604. https://doi.org/10.1016/S0142-9612(99)00223-9

    Article  CAS  PubMed  Google Scholar 

  39. Kumar A, Wang X, Nune KC, Misra RDK (2017) Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing. Int Wound J 14:1076–1087. https://doi.org/10.1111/iwj.12762

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fakhimikabir H, Tavakoli MB, Zarrabi A, Amouheidari A, Rahgozar S (2018) The role of folic acid-conjugated polyglycerol coated iron oxide nanoparticles on radiosensitivity with clinical electron beam (6 MeV) on human cervical carcinoma cell line: in vitro study. J Photochem Photobiol B Biol 182:71–76. https://doi.org/10.1016/j.jphotobiol.2018.03.023

    Article  CAS  Google Scholar 

  41. Mohamed Kasim MS, Sundar S, Rengan R (2018) Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front 5:585–596. https://doi.org/10.1039/c7qi00761b

    Article  CAS  Google Scholar 

  42. Balaji S, Mohamed Subarkhan MK, Ramesh R, Wang H, Semeril D (2020) Synthesis and structure of arene Ru(II) N∧O-chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics 39:1366–1375. https://doi.org/10.1021/acs.organomet.0c00092

    Article  CAS  Google Scholar 

  43. Subarkhan MKM, Ramesh R (2016) Ruthenium(II) arene complexes containing benzhydrazone ligands: Synthesis, structure and antiproliferative activity. Inorg Chem Front 3:1245–1255. https://doi.org/10.1039/c6qi00197a

    Article  CAS  Google Scholar 

  44. Mohamed Subarkhan MK, Ren L, Xie B, Chen C, Wang Y, Wang H (2019) Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.06.061

    Article  PubMed  Google Scholar 

  45. Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, Wang H, Małecki JG (2020) Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(II) carbazole-based hydrazone complexes. Dalt Trans 49:11385–11395. https://doi.org/10.1039/D0DT01476A

    Article  CAS  Google Scholar 

  46. Mohan N, Mohamed Subarkhan MK, Ramesh R (2018) Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J Organomet Chem. https://doi.org/10.1016/j.jorganchem.2018.01.022

    Article  Google Scholar 

  47. Mohamed Subarkhan MK, Ramesh R, Liu Y (2016) Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem 40:9813–9823. https://doi.org/10.1039/C6NJ01936F

    Article  CAS  Google Scholar 

  48. Kazimirova A, Baranokova M, Staruchova M, Drlickova M, Volkovova K, Dusinska M (2019) Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutat Res Toxicol Environ Mutagen. https://doi.org/10.1016/j.mrgentox.2019.05.001

    Article  Google Scholar 

  49. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Leśniak A, Salvati A, Hanrahan JP, de Jong WH, Dziubałtowska E, Stȩpnik M, Rydzyński K, McKerr G, Lynch I, Dawson KA, Howard CV (2008) Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–3074. https://doi.org/10.1021/nl801661w

    Article  CAS  PubMed  Google Scholar 

  50. Azqueta A, Dusinska M (2015) The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet 6:239. https://doi.org/10.3389/fgene.2015.00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu X, Zhou H, Liu Y, Wen Y, Wei C, Yu Q, Liu J (2018) Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater 82:143–157. https://doi.org/10.1016/j.actbio.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Bi K, Shu J, Liu X, Xu J, Deng G (2019) Ultrasound-controlled DOX-SiO2 nanocomposites enhance the antitumour efficacy and attenuate the toxicity of doxorubicin. Nanoscale 11:4210–4218. https://doi.org/10.1039/C8NR08497A

    Article  CAS  PubMed  Google Scholar 

  53. Li T, Hawley A, Rades T, Boyd BJ (2020) Exposure of liposomes containing nanocrystallised ciprofloxacin to digestive media induces solid-state transformation and altered in vitro drug release. J Control Release 323:350–360. https://doi.org/10.1016/j.jconrel.2020.04.034

    Article  CAS  PubMed  Google Scholar 

  54. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc 10:99–803. https://doi.org/10.1101/pdb.prot4493

    Article  Google Scholar 

  55. Liu K, Liu P, Liu R, Wu X (2015) Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 21:15–20. https://doi.org/10.12659/MSMBR.893327

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang W-Y, Wang Y-J, Du F, He M, Gu Y-Y, Bai L, Yang L-L, Liu Y-J (2019) Evaluation of anticancer effect in vitro and in vivo of iridium(III) complexes on gastric carcinoma SGC-7901 cells. Eur J Med Chem 178:401–416. https://doi.org/10.1016/j.ejmech.2019.06.003

    Article  CAS  PubMed  Google Scholar 

  57. Deng J, Yao M, Gao C (2017) Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. Acta Biomater 53:610–618. https://doi.org/10.1016/j.actbio.2017.01.082

    Article  CAS  PubMed  Google Scholar 

  58. Kenyon SH, Bhattacharyya J, Benson CJ, Carmichael PL (2004) Percutaneous penetration and genotoxicity of 4,4′-methylenedianiline through rat and human skin in vitro. Toxicology 196:65–75. https://doi.org/10.1016/j.tox.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  59. Yang Q, Yang Y, Li L, Sun W, Zhu X, Huang Y (2015) Polymeric nanomedicine for tumor-targeted combination therapy to elicit synergistic genotoxicity against prostate cancer. ACS Appl Mater Interfaces 7:6661–6673. https://doi.org/10.1021/am509204u

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xu.

Ethics declarations

Conflict of interest

The authors have no competing financial interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, K., Sui, L., Hao, Y. et al. A Synergic Fabrication of Chitosan-Coated Salinomycin-Loaded Hydroxyapatite Potential Nanocarriers for the Treatment of Liver Cancer. J Polym Environ 30, 1772–1786 (2022). https://doi.org/10.1007/s10924-021-02281-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02281-5

Keywords

Navigation