Skip to main content
Log in

Epoxidised Natural Rubber Filled Spent Coffee Ground Green Biocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigates the influence of spent coffee (SC), and potassium hydroxide (KOH) modified spent coffee (ACT-SC) as fillers on the mechanical and thermal properties of epoxidized natural rubber (ENR) biocomposites. The results show the tensile strength, 100% modulus, elongation at break of the ACT-SC rubber biocomposites were enhanced, which was further confirmed by changes in the diffraction pattern for filler filled composite. The SEM micrograph indicates the biocomposite was substantially more homogenous with modified spent coffee. However, FTIR analysis revealed no significant differences between the modified and unmodified samples. In addition, the thermal analysis results show the thermal stability of ENR-ACT-SC is higher than that of ENR-SC but lower than that of ENR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chattopadhyay PK, Basuli U, Chattopadhyay S (2010) Studies on novel dual filler based epoxidized natural rubber nanocomposite. Polym Compos. https://doi.org/10.1002/pc.20866

    Article  Google Scholar 

  2. Stelescu MD, Manaila E, Craciun G, Chirila C (2017) Development and characterization of polymer eco-composites based on natural rubber reinforced with natural fibers. Materials (Basel). https://doi.org/10.3390/ma10070787

    Article  Google Scholar 

  3. Ahmad SH, Rasid R, Bonnia NN, Zainol I, Mamun AA, Bledzki AK, Beg MDH (2011) Polyester–Kenaf composites: Effects of alkali fiber treatment and toughening of matrix using liquid natural rubber. J Compos Mater. https://doi.org/10.1177/0021998310373514

    Article  Google Scholar 

  4. Roy K, ChandraDebnath S, Das A, Heinrich G, Potiyaraj P (2018) Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polym Test. https://doi.org/10.1016/j.polymertesting.2018.03.032

    Article  Google Scholar 

  5. Ohashi T, Tohsan A, Ikeda Y (2017) Role of in situ generated silica for rubber science and technology. Polym Int. https://doi.org/10.1002/pi.5155

    Article  Google Scholar 

  6. Zaman HU, Khan RA, Haque M, Khan MA, Khan A, Huq T, Noor N, Rahman M, Mustafizur Rahman K, Huq D, Ahmad MA (2010) Preparation and mechanical characterization of jute reinforced polypropylene/natural rubber composite. J Reinf Plast Compos. https://doi.org/10.1177/0731684410364680

    Article  Google Scholar 

  7. Ismail H, Shuhelmy S, Edyham MR (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J. https://doi.org/10.1016/S0014-3057(01)00113-6

    Article  Google Scholar 

  8. Mǎnǎilǎ E, Crǎciun G, Stelescu MD, Dincǎ CL, Surdu L, Gurǎu D (2014) Polymeric composites based on flax wastes and natural rubber. Ind Textila 65:53–60

    Google Scholar 

  9. Raju G, Mas Haris MRH (2016) Preparation and characterization of acidified chitosan immobilized in epoxidized natural rubber. Polym Test. https://doi.org/10.1016/j.polymertesting.2016.05.005

    Article  Google Scholar 

  10. Ismail H, Shaari SM, Othman N (2011) The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym Test 30:784–790. https://doi.org/10.1016/j.polymertesting.2011.07.003

    Article  CAS  Google Scholar 

  11. Zhou Y, Fan M, Chen L, Zhuang J (2015) Lignocellulosic fibre mediated rubber composites: an overview. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2015.02.028

    Article  Google Scholar 

  12. Petinakis E, Yu L, Simon G, De K (2013) Natural fibre bio-composites incorporating poly(lactic acid). Fiber Reinf Polym. https://doi.org/10.5772/52253

    Article  Google Scholar 

  13. Chaitanya S, Singh I (2016) Novel Aloe Vera fiber reinforced biodegradable composites - development and characterization. J Reinf Plast Compos. https://doi.org/10.1177/0731684416652739

    Article  Google Scholar 

  14. McNutt J, He Q (2019) Spent coffee grounds: a review on current utilization. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2018.11.054

    Article  Google Scholar 

  15. Siriwong C, Boopasiri S, Jantarapibun V, Kongsook B, Pattanawanidchai S, Sae-Oui P (2018) Properties of natural rubber filled with untreated and treated spent coffee grounds. J Appl Polym Sci. https://doi.org/10.1002/app.46060

    Article  Google Scholar 

  16. Ballesteros LF, Teixeira JA, Mussatto SI (2014) Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. https://doi.org/10.1007/s11947-014-1349-z

    Article  Google Scholar 

  17. Alghooneh A, MohammadAmini A, Behrouzian F, Razavi SMA (2017) Characterisation of cellulose from coffee silverskin. Int J Food Prop. https://doi.org/10.1080/10942912.2016.1253097

    Article  Google Scholar 

  18. Li Z, Reimer C, Wang T, Mohanty AK, Misra M (2020) Thermal and mechanical properties of the biocomposites of Miscanthus biocarbon and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Polymers (Basel). https://doi.org/10.3390/polym12061300

    Article  PubMed Central  Google Scholar 

  19. Gupta MK, Singh R (2019) PLA-coated sisal fibre-reinforced polyester composite: water absorption, static and dynamic mechanical properties. J Compos Mater. https://doi.org/10.1177/0021998318780227

    Article  Google Scholar 

  20. Fang H, Zhang Y, Deng J, Rodrigue D (2013) Effect of fiber treatment on the water absorption and mechanical properties of hemp fiber/polyethylene composites. J Appl Polym Sci. https://doi.org/10.1002/app.37871

    Article  Google Scholar 

  21. Galiwango E, Rahman NSA, Al-Marzouqi AH, Abu-Omar MM, Khaleel AA (2018) Klason method: an effective method for isolation of lignin fractions from date palm biomass waste. Chem Process Eng Res 5:e02937

    Google Scholar 

  22. Taleb F, Ammar M, Ben Mosbah M, Ben Salem R, Moussaoui Y (2020) Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci Rep. https://doi.org/10.1038/s41598-020-68047-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oladele IO, Ibrahim IO, Akinwekomi AD, Talabi SI (2019) Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO3 reinforced polypropylene composites. Polym Test. https://doi.org/10.1016/j.polymertesting.2019.03.021

    Article  Google Scholar 

  24. de Paiva FFG, de Maria VPK, Torres GB, Dognani G, dos Santos RJ, Cabrera FC, Job AE (2019) Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manag 21:326–335. https://doi.org/10.1007/s10163-018-0801-y

    Article  CAS  Google Scholar 

  25. Nadlene R, Sapuan SM, Jawaid M, Ishak MR, Yusriah L (2018) The effects of chemical treatment on the structural and thermal, physical, and mechanical and morphological properties of roselle fiber-reinforced vinyl ester composites. Polym Compos. https://doi.org/10.1002/pc.23927

    Article  Google Scholar 

  26. Mohamed SAN, Zainudin ES, Sapuan SM, Azaman MD, Arifin AMT (2018) Introduction to natural fiber reinforced vinyl ester and vinyl polymer composites. Polym Compos. https://doi.org/10.1016/b978-0-08-102160-6.00001-9

    Article  Google Scholar 

  27. Ariawan D, Rivai TS, Surojo E, Hidayatulloh S, Akbar HI, Prabowo AR (2020) Effect of alkali treatment of Salacca Zalacca fiber (SZF) on mechanical properties of HDPE composite reinforced with SZF. Alexandria Eng J. https://doi.org/10.1016/j.aej.2020.07.005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universiti Sains Malaysia under Research University Incentive (RUI) [Grant Number 1001/PJJAUH/ 8011055].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GR; investigation, methodology, experiment test and manuscript writing, GR; Writing—review and editing: MK, NHHAB, HBMA.

Corresponding author

Correspondence to Gunasunderi Raju.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, G., Siddiqui, M.K., Abu Bakar, N.H.H. et al. Epoxidised Natural Rubber Filled Spent Coffee Ground Green Biocomposites. J Polym Environ 30, 1415–1422 (2022). https://doi.org/10.1007/s10924-021-02280-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02280-6

Keywords

Navigation