Skip to main content
Log in

Synthesis of Silver Nanoparticles Through Orange Peel Powder for Antibacterial Composite Filler Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Environmental concerns and the positive aspects of biowaste materials gained the attention of researchers to use them as filler materials in fabricating of green composites along with polymer matrices, but most of them are not suitable for extensive applications in high thermal applications. In most of the natural particulate materials are not having the ability to fight against pathogens. To overcome such barriers, a modification of biowaste—orange peel powder (OPP) by the generation of silver nanoparticles (AgNPs) is prepared with the one-step hydrothermal process. The modified Orange Peel Powder (MOPP), is then characterized by FESEM, EDX, FT-IR, XRD, and Thermal analyses. The presence of AgNPs in the MOPP is confirmed through FESEM & EDX analysis. FT-IR spectral analysis pronounced the non mutate functional groups in MOPP as compared with OPP. The generation of AgNPs in MOPP is confirmed through the XRD peaks of reflection planes at (1,1,1), (2,0,0), (2,2,0) & (3,1,1). Thermal Analysis results of TGA and DSC show the MOPP has increased thermal stability up to 363 °C. Antibacterial test against Gram-negative and Gram-positive bacteria for OPP & MOPP shows the inclusion of Ag strongly objects the pathogens. Eventually, the MOPP can be utilized as filler material along with the polymer matrix in high thermal as well as antibacterial composite filler applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta S, Mohan K, Prasad R, Gupta S (1998) Solid waste management in India: Options and opportunities. Resour Conserv Recycl 24(2):137–154

    Article  Google Scholar 

  2. Obi FO, Ugwuishiwu BO, Nwakaire JN (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol (NIJOTECH) 35(4):957–964

    Article  Google Scholar 

  3. Martín MA, Siles JA, Chica AF, Martín A (2010) Bioresource technology biomethanization of orange peel waste. Bioresour Technol 101(23):8993–8999. https://doi.org/10.1016/j.biortech.2010.06.133

    Article  CAS  PubMed  Google Scholar 

  4. Miran W, Nawaz M, Jang J, Lee DS (2016) Science of the total environment conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Sci Total Environ 547(15):197–205. https://doi.org/10.1016/j.scitotenv.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Sadanand V, Rajini N, Varada Rajulu A, Satyanarayana B (2018) Effect of sunlight on the preparation and properties of cellulose/silver nanoparticle composite films by in situ method using Ocimum sanctum leaf extract as a reducing agent. Int J Polym Anal Charact 23(4):313–320. https://doi.org/10.1080/1023666X.2018.1440915

    Article  CAS  Google Scholar 

  6. Suteewong T, Wongpreecha J, Polpanich D, Jangpatarapongsa K, Kaewsaneha C, Tangboriboonrat P (2018) Graphical abstract SC. Colloids Surf B 174:544–552. https://doi.org/10.1016/j.colsurfb.2018.11.037

    Article  CAS  Google Scholar 

  7. Arthanarieswaran VP, Kumaravel A, Saravanakumar SS (2015) Physico-chemicalproperties of alkali treated acacia leucophloea fibers. Int J Polym Anal Charact 20(8):704–713. https://doi.org/10.1080/1023666X.2015.1081133

    Article  CAS  Google Scholar 

  8. Pusphalatha R, Ashok B, Hariram N, Rajulu AV. (2019) Generated silver nanoparticles using tamarind leaf extract reducing agent. Int J Polym Anal Charact 24(6):524–532. https://doi.org/10.1080/1023666X.2019.1614265

    Article  CAS  Google Scholar 

  9. Indira Devi MP, Nallamuthu N, Rajini N, Varada Rajulu A, Hariram N, Siengchin S (2018) Thermal, and antibacterial characterization of composites of cellulose/modified Pennisetum purpureum natural fibers with in situ generated copper nanoparticles. Int J Polym Anal Charact 23(6):502–508. https://doi.org/10.1080/1023666X.2018.1485201

    Article  CAS  Google Scholar 

  10. Biswas MC, Tiimob BJ, Abdela W, Jeelani S, Rangari VK (2019) Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application. Food Packag Shelf Life 19:104–113. https://doi.org/10.1016/j.fpsl.2018.12.003

    Article  Google Scholar 

  11. Rub MA, Azum N, Asiri AM, Khan A, Alamry KA, Kosa SA, Nazeeruddin MK (2019) Micellization behavior of bile salt with pluronic (F127) and synthesis of silver nanoparticles in a mixed system. J Phys Org Chem. https://doi.org/10.1002/poc.3964

    Article  Google Scholar 

  12. Ashok B, Obi Reddy K, Yorseng K, Rajini N, Hariram N, Siengchin S, Varada Rajulu A (2018) Modification of natural fibers from Thespesia lampas plant by in situ generation of silver nanoparticles in single-step hydrothermal method in situ generation of silver nanoparticles in single-step. Int J Polym Anal Charact 23(6):509–516. https://doi.org/10.1080/1023666X.2018.1486270

    Article  CAS  Google Scholar 

  13. Khan AAP, Khan A, Asiri AM, Kashmery HA (2018) Spectral and mechanistic investigation of oxidation of rizatriptan by silver third periodate complex in aqueous alkaline medium. Russ J Phys Chem B 12(3):412–421

    Article  CAS  Google Scholar 

  14. Rhim JW, Wang LF, Hong SI (2013) Food hydrocolloids preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll 33(2):327–335. https://doi.org/10.1016/j.foodhyd.2013.04.002

    Article  CAS  Google Scholar 

  15. Manikandan KM, Yelilarasi A, Senthamaraikannan P, Saravanakumar SS, Khan A, Asiri AM (2019) A green-nanocomposite film based on poly (vinyl alcohol)/eleusine coracana : structural, thermal, and morphological properties. Int J Polym Anal Charact 24(3):257–265. https://doi.org/10.1080/1023666X.2019.1567087

    Article  CAS  Google Scholar 

  16. ul Haque S, Nasar A, Rajender B, Khan A, Asiri AM, Ashraf GM (2017) Optimization of glucose powered biofuel cell anode developed by polyaniline-silver as electron transfer enhancer and ferritin as biocompatible redox mediator. Sci Rep. https://doi.org/10.1038/s41598-017-12708-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khan A, Khan AAP, Asiri AM (2016) Toward design and measurement of electrical conductivity and thermal properties of silver nanoparticle embedded poly(o-anisidine) molybdophosphate nanocomposite and its application as microbiosensor. Polym Compos 38:E237–E245

    Article  Google Scholar 

  18. Tverdokhlebov SI, Ignatov VP, Stepanov IB, Sivin DO, Petlin DG (2012) Hybrid method for the formation of biocomposites on the surface of stainless steel implants. Engineering 4:613–618

    Article  Google Scholar 

  19. Khan A, Asiri AM, Aslam Parwaz Khan A, Gupta V, Sirajuddin, Gupta V (2015) Room temperature preparation, electrical conductivity, and thermal behavior evaluation on silver nanoparticle embedded polyaniline tungstophosphate nanocomposite. Polym Compos 37(8):2460–2466

    Article  Google Scholar 

  20. Arockianathan PM, Sekar S, Kumaran B, Sastry TP (2012) Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol 50(4):939–946. https://doi.org/10.1016/j.ijbiomac.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Zhang J, Natarajan H, Zhang J, Ashok B (2019) Modification of agricultural waste tamarind fruit shell powder by in situ generation of silver nanoparticles for antibacterial filler applications. Int J Polym Anal Charact 24(5):421–427. https://doi.org/10.1080/1023666X.2019.1602319

    Article  CAS  Google Scholar 

  22. Santhanam K, Kumaravel A, Saravanakumar SS, Arthanarieswaran VP (2016) Characterization of new natural cellulosic fiber from ipomoea staphylinaplant. Int J Polym Anal Charact 21(3):267–274. https://doi.org/10.1080/1023666X.2016.1147654

    Article  CAS  Google Scholar 

  23. Rahman MM, Khan A, Asiri AM (2015) Chemical sensor development based on poly(o-anisidine)silverized–MWCNT nanocomposites deposited on glassy carbon electrodes for environmental remediation. RSC Adv 5(87):71370–71378

    Article  CAS  Google Scholar 

  24. Braga LR, Pérez LM, Soazo MD, Machado F (2019) Evaluation of the antimicrobial, antioxidant and physicochemical properties of poly (vinyl chloride) films containing quercetin and silver nanoparticles. LWT - Food Sci Technol 101:491–498. https://doi.org/10.1016/j.lwt.2018.11.082

    Article  CAS  Google Scholar 

  25. Vincent Choo K (1990) Fundamentals of composite materials. Knowen Academic Press, Dover

    Google Scholar 

  26. Zapata B, Balmaseda J, Fregoso-Israel E, Torres-Garcia E (2009) Thermo-kinetics study of orange peel in air. J Therm Anal Calorim 98(1):309–315. https://doi.org/10.1007/s10973-009-0146-9

    Article  CAS  Google Scholar 

  27. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344

    Article  CAS  Google Scholar 

  28. Wei L, McDonald AG (2016) A review on grafting of biofibers for biocomposites. Materials 9(4):303–343

    Article  Google Scholar 

  29. Wu X (2018) A novel polycarbonate composite for waveguides. J Appl Polym Sci 135(33):46529–46535

    Article  Google Scholar 

  30. Xue Y, Hou H, Zhu S, Zha J (2009) Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: Pavement performance and environmental impact. Constr Build Mater 23(2):989–996

    Article  Google Scholar 

  31. Yang W, Shen C, Ji Q, An H (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8):1–7

    Article  Google Scholar 

  32. Yong J, Beom S, Kim S (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  Google Scholar 

  33. Yuan G, Lv H, Yang B, Chen X, Sun H (2015) Physical properties, antioxidant and antimicrobial activity of chitosan films containing carvacrol and pomegranate peel extract. Molecules 20(6):11034–11045

    Article  CAS  Google Scholar 

  34. Zapata B, Balmaseda J (2009) Thermo-kinetics study of orange peel in air. J Therm Anal Calorim 98(1):309–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to managements of both Kamaraj College of Engineering & Technology, Virudhunagar 626 001, Tamil Nadu, India, and Nehru Institute of Engineering & Technology, Coimbatore-641 105, Tamil Nadu, India for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rathinavel.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinavel, S., Saravanakumar, S.S. Synthesis of Silver Nanoparticles Through Orange Peel Powder for Antibacterial Composite Filler Applications. J Polym Environ 30, 1407–1414 (2022). https://doi.org/10.1007/s10924-021-02276-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02276-2

Keywords

Navigation