Skip to main content
Log in

Propranolol Hydrochloride Film Coated Tablets Using Natural Rubber Latex Blends as Film Former

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the feasibility of concentrated natural rubber latex (CNRL), a major polymer, blended with either hydroxypropylmethylcellulose (HPMC) or ethylcellulose (EC) for film coated tablets. Propranolol hydrochloride tablets were used as core materials for coating. The blended films were preliminary casted and characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) techniques. The in vitro drug releases of film coated tablets were evaluated and their results fitted to zero, first, and Higuchi’s kinetic models to investigate the mechanism of drug released. The results showed that CNRL–HPMC and CNRL–EC blended films did not change in DSC, XRD, and SEM results from their raw properties. CNRL–HPMC and CNRL–EC could form the coated films on the tablets completely, and the in vitro drug release data showed the retardation effect of drug release in all formulations. The drug releases from 5%CNRL–1, 2, or 5%HPMC, and 5%CNRL–5%EC film coated tablets fitted to Higuchi’s model, and those from 5%CNRL–1 or 2%EC film coated tablets fitted to first order kinetics. HPMC and EC amounts also affected the properties of film coated tablets. Increasing the HPMC amount in the coating dispersion provided the increase of release rate of drug. On the other hand, increasing amount of EC, the release rate decreased. SEM photographs showed the thickness of coated film on core tablets that depended on amount of coating levels. Thus, this work successfully used CNRL blending as film forming agent in tablet coating. The results confirmed that CNRL blends were possible to be used as film former for pharmaceutical coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Phinyocheep P (2014) Chemical modification of natural rubber (NR) for improved performance. In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, Cambridge, pp 68–118

    Chapter  Google Scholar 

  2. Sanguansap K, Suteewong T, Saendee P, Buranabunya U, Tangboriboonrat P (2005) Composite natural rubber based latex particles: a novel approach. Polymer 46:1373–1378

    Article  CAS  Google Scholar 

  3. Rippel MM, Lee L-T, Leite CAP, Galembeck F (2003) Skim and cream natural rubber particles: colloidal properties, coalescence and film formation. J Colloid Interface Sci 268:330–340

    Article  CAS  PubMed  Google Scholar 

  4. Hassan ZA, Young SD, Hepburn C, Arizal R (1992) Urea-rubber matrices as slow-release fertilizers. Fertil Res 31:185–192

    Article  CAS  Google Scholar 

  5. Riyajan S-A, Sasithornsonti Y, Phinyocheep P (2012) Green natural rubber-g-modified starch for controlling urea release. Carbohydr Polym 89:251–258

    Article  CAS  PubMed  Google Scholar 

  6. Sirichaiwat C (1996) A study of preparation of controlled release urea fertilizer by using natural rubber latex. Polymer Science, Faculty of Science, Mahidol University

  7. Adlim M, Zarlaida F, Rahmayani RFI, Wardani R (2018) Preparation and characterization natural rubber-urea-tablets coated by chitosan. IOP Conf Ser Mater Sci Eng 380:012010

    Article  Google Scholar 

  8. Herculano RD, Alencar de Queiroz AA, Kinoshita A, Oliveira ON, Graeff CFO (2011) On the release of metronidazole from natural rubber latex membranes. Mater Sci Eng C 31:272–275

    Article  CAS  Google Scholar 

  9. Herculano RD, Guimarães SAC, Belmonte GC, Duarte MAH, Oliveira Júnior ONd, Kinoshita A et al (2010) Metronidazole release using natural rubber latex as matrix. Mater Res 13:57–61

    Article  CAS  Google Scholar 

  10. Barros NRd, Miranda MCR, Borges FA, Gemeinder JLP, Mendonça RJd, Cilli EM et al (2017) Natural rubber latex: development and in vitro characterization of a future transdermal patch for enuresis treatment. Int J Polym Mater Polym Biomater 66:871–876

    Article  Google Scholar 

  11. Floriano JF, de Barros NR, Cinman JLF, da Silva RG, Loffredo AV, Borges FA et al (2018) Ketoprofen loaded in natural rubber latex transdermal patch for tendinitis treatment. J Polym Environ 26:2281–2289

    Article  CAS  Google Scholar 

  12. Kalkornsurapranee E, Waiprib R, Pichayakorn W (2017) Medicated pressure sensitive adhesive patches from STR-5L block rubber: effect of preparation process. Key Eng Mater 751:236–241

    Article  Google Scholar 

  13. Suksaeree J, Pichayakorn W, Monton C, Sakunpak A, Chusut T, Saingam W (2014) Rubber polymers for transdermal drug delivery systems. Ind Eng Chem Res 53:507–513

    Article  CAS  Google Scholar 

  14. Panrat K, Boonme P, Taweepreda W, Pichayakorn W (2013) Propranolol hydrochloride extended-release matrix tablets using natural rubber latex as binder. Adv Mater Res 747:91–94

    Article  CAS  Google Scholar 

  15. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci 411–412:81–90

    Article  Google Scholar 

  16. Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W (2012) Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. Chem Eng Res Des 90:906–914

    Article  CAS  Google Scholar 

  17. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) Deproteinized natural rubber latex/hydroxypropylmethyl cellulose blending polymers for nicotine matrix films. Ind Eng Chem Res 51:8442–8452

    Article  CAS  Google Scholar 

  18. Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Amnuaikit T, Ritthidej GC (2013) Deproteinised natural rubber used as a controlling layer membrane in reservoir-type nicotine transdermal patches. Chem Eng Res Des 91:520–529

    Article  CAS  Google Scholar 

  19. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2013) Deproteinized natural rubber film forming polymeric solutions for nicotine transdermal delivery. Pharm Dev Technol 18:1111–1121

    Article  CAS  PubMed  Google Scholar 

  20. Pichayakorn W, Boontawee H, Taweepreda W, Suksaeree J, Boonme P (2014) Physicochemical and drug release characterization of lidocaine-loaded transdermal patches prepared from STR-5L block rubber. Ind Eng Chem Res 53:1672–1677

    Article  CAS  Google Scholar 

  21. Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Amnuaikit T, Ritthidej GC (2015) Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: in vitro evaluations. Pharm Dev Technol 20:966–975

    Article  CAS  PubMed  Google Scholar 

  22. Waiprib R, Boonme P, Taweepreda W, Kalkornsurapranee E, Suksaeree J, Pichayakorn W (2017) Deproteinized natural rubber latex/gelatinized starch blended films as drug delivery carrier. Monatsh Chem 148:1223–1228

    Article  CAS  Google Scholar 

  23. Morise BT, Chagas ALD, Barros NR, Miranda MCR, Borges FA, Gemeinder JLP et al (2019) Scopolamine loaded in natural rubber latex as a future transdermal patch for sialorrhea treatment. Int J Polym Mater Polym Biomater 68:788–795

    Article  CAS  Google Scholar 

  24. Spin JR, de Oliveira GJPL, Spin-Neto R, Herculano RD, Marcantonio RAC (2021) Effect of natural latex membranes on wound repair of palate donor areas: a pilot randomized controlled trial study, including the membranes characterization. Mater Today Commun 27:102390

    Article  CAS  Google Scholar 

  25. Barros NR, Ahadian S, Tebon P, Rudge MVC, Barbosa AMP, Herculano RD (2021) Highly absorptive dressing composed of natural latex loaded with alginate for exudate control and healing of diabetic wounds. Mater Sci Eng C 119:111589

    Article  CAS  Google Scholar 

  26. Guerra NB, Sant’Ana Pegorin G, Boratto MH, de Barros NR, de Oliveira Graeff CF, Herculano RD (2021) Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Mater Sci Eng C 126:112126

    Article  CAS  Google Scholar 

  27. Herculano RD, Silva CP, Ereno C, Guimaraes SAC, Kinoshita A, de Oliveira Graeff CF (2009) Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12:253–256

    Article  CAS  Google Scholar 

  28. Almeida GFB, Cardoso MR, Zancanela DC, Bernardes LL, Norberto AMQ, Barros NR et al (2020) Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes. Appl Surf Sci 506:144762

    Article  CAS  Google Scholar 

  29. de Barros NR, dos Santos RS, Miranda MCR, Bolognesi LFC, Borges FA, Schiavon JV et al (2019) Natural latex-glycerol dressing to reduce nipple pain and healing the skin in breastfeeding women. Skin Res Technol 25:461–468

    Article  PubMed  Google Scholar 

  30. Zancanela DC, Funari CS, Herculano RD, Mello VM, Rodrigues CM, Borges FA et al (2019) Natural rubber latex membranes incorporated with three different types of propolis: physical-chemistry and antimicrobial behaviours. Mater Sci Eng C 97:576–582

    Article  CAS  Google Scholar 

  31. Garms BC, Borges FA, de Barros NR, Marcelino MY, Leite MN, Del Arco MC et al (2019) Novel polymeric dressing to the treatment of infected chronic wound. Appl Microbiol Biotechnol 103:4767–4778

    Article  CAS  PubMed  Google Scholar 

  32. Panrat K, Boonme P, Taweepreda W, Pichayakorn W (2012) Formulations of natural rubber latex as film former for pharmaceutical coating. Procedia Chem 4:322–327

    Article  CAS  Google Scholar 

  33. Wilson CG (2013) Oral drug delivery. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials Science. Academic Press, San Diego, pp 1083-1087 

    Chapter  Google Scholar 

  34. Ali AA, Sayed OM (2013) Development and characterization of ketorolac tromethamine osmotic pump tablets. J Drug Deliv Sci Technol 23:275–281

    Article  CAS  Google Scholar 

  35. Maroni A, Del Curto MD, Zema L, Foppoli A, Gazzaniga A (2013) Film coatings for oral colon delivery. Int J Pharm 457:372–394

    Article  CAS  PubMed  Google Scholar 

  36. Kumar SS, Ganesan V (2014) Formulation of controlled release of loxacin tablets using natural polymers. Int J Pharm Pharm Sci 6:393–396

    Google Scholar 

  37. Feng B, Wu Z-f, He J, Lan Y, Wang X-p, Han X et al (2019) A novel bitter masking approach: powder coating technology-take Sanhuang tablets as an example. J Drug Deliv Sci Technol 52:46–54

    Article  CAS  Google Scholar 

  38. Wang J, Hemenway J, Chen W, Desai D, Early W, Paruchuri S et al (2012) An evaluation of process parameters to improve coating efficiency of an active tablet film-coating process. Int J Pharm 427:163–169

    Article  CAS  PubMed  Google Scholar 

  39. Bonacucina G, Di Martino P, Piombetti M, Colombo A, Roversi F, Palmieri GF (2006) Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films. Int J Pharm 313:72–77

    Article  CAS  PubMed  Google Scholar 

  40. Li XN, Guo HX, Heinamaki J (2010) Aqueous coating dispersion (pseudolatex) of zein improves formulation of sustained-release tablets containing very water-soluble drug. J Colloid Interface Sci 345:46–53

    Article  CAS  PubMed  Google Scholar 

  41. Fu D-g (2015) Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochem Biophys 73:291–296

    Article  CAS  PubMed  Google Scholar 

  42. Vrbanac H, Trontelj J, Osojnik A, Berginc K, Janković B (2021) Effect of gastrointestinal transit on micro-environmental pH inside HPMC matrix tablets—in vitro study. Int J Pharm 604:120718

    Article  CAS  PubMed  Google Scholar 

  43. Gowthami B, Krishna SVG, Rao DS (2021) Formulation of tablets in capsule system: statistical optimization for chronotherapeutic drug delivery of propranolol hydrochloride. J Drug Deliv Sci Technol 63:102398

    Article  CAS  Google Scholar 

  44. He J, Zhang Z, Zheng X, Li L, Qi J, Wu W et al (2021) Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics 13:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. ASTM International (2010) ASTM D1076-10, standard specification for rubber-concentrated, ammonia preserved, creamed, and centrifuged natural latex. ASTM International Publishing, West Conshohocken

    Google Scholar 

  46. AOAC International (2000) AOAC Official Method 988.05: protein (crude) in animal feed and pet food CuSO4/TiO2 mixed catalyst Kjeldahl method. AOAC International Publishing, Rockville

    Google Scholar 

  47. Organization for Economic Co-operation and Development (2001) Test no. 423: Acute oral toxicity—acute toxic class method. Organization for Economic Co-operation and Development: OECD Publishing, Paris

    Google Scholar 

  48. Phaechamud T, Koizumi T, Ritthidej GC (2000) Chitosan citrate as film former: compatibility with water-soluble anionic dyes and drug dissolution from coated tablet. Int J Pharm 198:97–111

    Article  CAS  PubMed  Google Scholar 

  49. The United States Pharmacopeial Convention (2018) Propranolol hydrochloride tablets. USP41-NF36. The United States Pharmacopeial Convention, Rockville

    Google Scholar 

  50. Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    Article  CAS  PubMed  Google Scholar 

  51. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362

    Article  CAS  PubMed  Google Scholar 

  52. Boonme P, Taweepreda W, Pichayakorn W (2014) Novel process in preparation of deproteinized natural rubber latex. Adv Mater Res 844:462–465

    Article  Google Scholar 

  53. Pichayakorn W, Suksaeree J, Taweepreda W (2014) Improved deproteinization process for protein-free natural rubber latex. Adv Mater Res 844:474–477

    Article  Google Scholar 

  54. Cesar MB, Borges FA, Bilck AP, Yamashita F, Paulino CG, Herculano RD (2020) Development and characterization of natural rubber latex and polylactic acid membranes for biomedical application. J Polym Environ 28:220–230

    Article  CAS  Google Scholar 

  55. Zapata-Gallego NT, Álvarez-Láinez ML (2019) Effect of the phenological stage in the natural rubber latex properties. J Polym Environ 27:364–371

    Article  CAS  Google Scholar 

  56. Kararli TT, Hurlbut JB, Needham TE (1990) Glass–rubber transitions of cellulosic polymers by dynamic mechanical analysis. J Pharm Sci 79:845–848

    Article  CAS  PubMed  Google Scholar 

  57. Davidovich-Pinhas M, Barbut S, Marangoni AG (2014) Physical structure and thermal behavior of ethylcellulose. Cellulose 21:3243–3255

    Article  CAS  Google Scholar 

  58. Wannaphatchaiyong S, Suksaeree J, Waiprib R, Kaewpuang A, Saelee W, Pichayakorn W (2019) Gelatin/gelatinized sago starch biomembranes as a drug delivery system using rubber latex as plasticizer. J Polym Environ 27:2380–2394

    Article  CAS  Google Scholar 

  59. Sahni E, Chaudhuri B (2011) Experiments and numerical modeling to estimate the coating variability in a pan coater. Int J Pharm 418:286–296

    Article  CAS  PubMed  Google Scholar 

  60. Wanasawas P, Sinchaipanid N, Fell JT, Mitrevej A (2013) Influence of pectin and calcium pectinate films on in vitro drug release from coated theophylline pellets. J Drug Deliv Sci Technol 23:465–470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Prince of Songkla University and the Medium Projects on Rubber (MPR) of the Thailand Research Fund (Grant No. RDG5350065) for financial supports. Thanks also to Dr. Brian Hodgson for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiwat Pichayakorn.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichayakorn, W., Panrat, K., Suksaeree, J. et al. Propranolol Hydrochloride Film Coated Tablets Using Natural Rubber Latex Blends as Film Former. J Polym Environ 30, 925–937 (2022). https://doi.org/10.1007/s10924-021-02250-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02250-y

Keywords

Navigation