Skip to main content
Log in

A New Montmorillonite-Based Porous Composites: Effectively Removal of Cr(III)-Organic Complexes in Tannery Wastewater

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Montmorillonite-based porous adsorbent prepared by gel casting method was used to adsorb Cr(III)-organic complexes in tanning wastewater,together with the initial concentration of 10 mg L−1. The as-porous adsorbent exhibited an excellent performance of separation. Meanwhile, its structural and morphology were characterized by TG, BET, XRD, SEM, EDS and XPS, showing that the porous adsorbent was complete hollow ball structure. And the adsorption results showed that the adsorption amount of porous adsorbent rapidly declined from 9.58 to 5.28 mg L−1, and only Cr(III) was adsorbed, when the molar ratio of Cr(III) and citrate was more than 1:5. Increased of pH was beneficial to adsorb Cr(III)-citrate in range from 2.46 to 7.12. Furthermore, the best removal efficiency of Cr(III)-organic complex was up to 97% and still above 84% after five cycles with porous adsorbent. Finally, the mechanism on adsorbing Cr(III) with porous adsorbent is also provided. Therefore, a kind of porous adsorbent which was easily separated, was prepared to deeply treat tanning wastewater containing Cr(III)-organic complex, and solve the problem of difficult recycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lofrano G, Meric S, Zengin GE, Orhon D (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461–462:265–281. https://doi.org/10.1016/j.scitotenv.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  2. Covington AD (1997) Modern tanning chemistry. Chem Soc Rev 26:111. https://pubs.rsc.org/en/content/articlehtml/1997/cs/cs9972600111

    Article  CAS  Google Scholar 

  3. He X, Wu C, Qian Y, Li Y, Zhang L, Ding F, Chen H, Shen J (2019) Highly sensitive and selective light-up fluorescent probe for monitoring gallium and chromium ions in vitro and in vivo. Analyst 144:3807–3816. https://doi.org/10.1039/c9an00625g

    Article  CAS  PubMed  Google Scholar 

  4. He X, Chen H, Xu C, Fan J, Xu W, Li Y, Deng H, Shen J (2020) Ratiometric and colorimetric fluorescent probe for hypochlorite monitor and application for bioimaging in living cells, bacteria and zebrafish. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122029

  5. He X, Deng Z, Xu W, Li Y, Xu C, Chen H, Shen J (2020) A novel dual-response chemosensor for bioimaging of exogenous/endogenous hypochlorite and hydrazine in living cells, pseudomonas aeruginosa and zebrafish. Sens Actuators B. https://doi.org/10.1016/j.snb.2020.128450

  6. He X, Xu C, Xiong W, Qian Y, Fan J, Ding F, Deng H, Chen H, Shen J (2019) The ICT-based fluorescence and colorimetric dual sensing of endogenous hypochlorite in living cells, bacteria, and zebrafish. Analyst 145:29–33. https://doi.org/10.1039/c9an02226k

    Article  CAS  PubMed  Google Scholar 

  7. Hokkanen S, Bhatnagar A, Repo E, Lou S, Sillanpää M (2016) Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chem Eng J 283:445–452. https://doi.org/10.1016/j.cej.2015.07.035

    Article  CAS  Google Scholar 

  8. Meunier N, Drogui P, Montane C, Hausler R, Mercier G, Blais JF (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater 137:581–590. https://doi.org/10.1016/j.jhazmat.2006.02.050

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Wang G, Deng Q, Ng DH, Zhao H (2014) Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl Mater Inter 6:3008–3015. https://doi.org/10.1021/am405607h

    Article  CAS  Google Scholar 

  10. Religa P, Kowalik A, Gierycz P (2011) Application of nanofiltration for chromium concentration in the tannery wastewater. J Hazard Mater 186:288–292. https://doi.org/10.1016/j.jhazmat.2010.10.112

    Article  CAS  PubMed  Google Scholar 

  11. Wang D, Zhang G, Dai Z, Zhou L, Bian P, Zheng K, Wu Z, Cai D (2018) Sandwich-like nanosystem for simultaneous removal of Cr(VI) and Cd(II) from water and soil. ACS Appl Mater Inter 10:18316–18326. https://doi.org/10.1021/acsami.8b03379

    Article  CAS  Google Scholar 

  12. Elabbas S, Mandi L, Berrekhis F, Pons MN, Leclerc JP, Ouazzani N (2016) Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: eggshell and powdered marble. J Environ Manage 166:589–595. https://doi.org/10.1016/j.jenvman.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Huang K, Xie K, Yang Y, Liu H (2016) An ecological new approach for treating Cr(VI)-containing industrial wastewater: photochemical reduction. Water Res 93:187–194. https://doi.org/10.1016/j.watres.2016.02.025

    Article  CAS  PubMed  Google Scholar 

  14. Ye Y, Jiang Z, Xu Z, Zhang X, Wang D, Lv L, Pan B (2017) Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism. Water Res 126:172–178. https://doi.org/10.1016/j.watres.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  15. Wang D, Ye Y, Liu H, Ma H, Zhang W (2018) Effect of alkaline precipitation on Cr species of Cr(III)-bearing complexes typically used in the tannery industry. Chemosphere 193:42–49. https://doi.org/10.1016/j.chemosphere.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  16. Qiu J, Dong S, Wang H, Cheng X, Du Z (2015) Adsorption performance of low-cost gelatin–montmorillonite nanocomposite for Cr(III) ions. RSC Adv 5:58284–58291. https://pubs.rsc.org/en/content/articlepdf/2015/ra/c5ra08781c

    Article  CAS  Google Scholar 

  17. Ijagbemi CO, Baek MH, Kim DS (2009) Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J Hazard Mater 166:538–546. https://doi.org/10.1016/j.jhazmat.2008.11.085

    Article  CAS  PubMed  Google Scholar 

  18. Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93. https://doi.org/10.1016/j.jssc.2014.06.030

    Article  CAS  Google Scholar 

  19. Abou-El-Sherbini KS, Hassanien MM (2010) Study of organically-modified montmorillonite clay for the removal of copper(II). J Hazard Mater 184:654–661. https://doi.org/10.1016/j.jhazmat.2010.08.088

    Article  CAS  PubMed  Google Scholar 

  20. Di Natale F, Erto A, Lancia A, Musmarra D (2015) Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon. J Hazard Mater 281:47–55. https://doi.org/10.1016/j.jhazmat.2014.07.072

    Article  CAS  PubMed  Google Scholar 

  21. Gong K, Hu Q, Yao L, Li M, Sun D, Shao Q, Qiu B, Guo Z (2018) Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr(VI) removal from wastewater. ACS Sustainable Chem Eng 6:7283–7291. https://doi.org/10.1021/acssuschemeng.7b04421

    Article  CAS  Google Scholar 

  22. Yu P, Wang H-Q, Bao R-Y, Liu Z, Yang W, Xie B-H, Yang M-B (2017) Self-assembled sponge-like chitosan/reduced graphene oxide/montmorillonite composite hydrogels without cross-linking of chitosan for effective Cr(VI) sorption. ACS Sustainable Chem Eng 5:1557–1566. https://doi.org/10.1021/acssuschemeng.6b02254

    Article  CAS  Google Scholar 

  23. Cheng W, Ding C, Nie X, Duan T, Ding R (2017) Fabrication of 3D macroscopic graphene oxide composites supported by montmorillonite for efficient U(VI) wastewater purification. ACS Sustainable Chem Eng 5:5503–5511. https://doi.org/10.1021/acssuschemeng.7b00841

    Article  CAS  Google Scholar 

  24. Zhu J, Cozzolino V, Pigna M, Huang Q, Caporale AG, Violante A (2011) Sorption of Cu, Pb and Cr on Na-montmorillonite: competition and effect of major elements. Chemosphere 84:484–489. https://doi.org/10.1016/j.chemosphere.2011.03.020

    Article  CAS  PubMed  Google Scholar 

  25. Jin J, Xiao T, Tan Y, Zheng J, Liu R, Qian G, Wei H, Zhang J (2018) Effects of TiO2 pillared montmorillonite nanocomposites on the properties of asphalt with exhaust catalytic capacity. J Clean Prod 205:339–349. https://doi.org/10.1016/j.jclepro.2018.08.251

    Article  CAS  Google Scholar 

  26. Dou X, Mohan D, Pittman CU, Yang S (2012) Remediating fluoride from water using hydrous zirconium oxide. Chem Eng J 198–199:236–245. https://doi.org/10.1016/j.cej.2012.05.084

    Article  CAS  Google Scholar 

  27. Reddy CV, Babu B, Reddy IN, Shim J (2018) Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram Int 44:6940–6948. https://doi.org/10.1016/j.ceramint.2018.01.123

    Article  CAS  Google Scholar 

  28. Ma ET, Yang D, Sun S, Xu Y, Kim J EJ (2019) Zirconium dioxide loaded montmorillonite composites as high-efficient adsorbents for the removal of Cr3+ ions from tanning wastewater. J Solid State Chem 277:502–509. https://doi.org/10.1016/j.jssc.2019.07.002

    Article  CAS  Google Scholar 

  29. Zhang F-Z, Kato T, Fuji M, Takahashi M (2006) Gelcasting fabrication of porous ceramics using a continuous process. J Eur Ceram Soc 26:667–671. https://doi.org/10.1016/j.jeurceramsoc.2005.07.021

    Article  CAS  Google Scholar 

  30. Li ET, Yang Y, Qian S, Liu J, Xing L J (2018) Nano-montmorillonite‐based porous material prepared by gel casting: structure and adsorption properties. Micro Nano Lett 13:332–334. https://doi.org/10.1049/mnl.2017.0531

    Article  CAS  Google Scholar 

  31. Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR (2016) Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529:190–194. https://doi.org/10.1038/nature16185

    Article  CAS  PubMed  Google Scholar 

  32. Gustafsson JP, Persson I, Oromieh AG, van Schaik JW, Sjostedt C, Kleja DB (2014) Chromium(III) complexation to natural organic matter: mechanisms and modeling. Environ Sci Technol 48:1753–1761. https://doi.org/10.1021/es404557e

    Article  CAS  PubMed  Google Scholar 

  33. Chen N, Pan B (2021) Tributylhexadecylphosphonium modification strategy to construct gold nanoprobes for the detection of aqueous Cr(III)-organic complexes. Anal Chem 93:1811–1817. https://doi.org/10.1021/acs.analchem.0c04688

    Article  CAS  PubMed  Google Scholar 

  34. Zhu L, Wang L, Xu Y (2017) Chitosan and surfactant co-modified montmorillonite: a multifunctional adsorbent for contaminant removal. Appl Clay Sci 146:35–42. https://doi.org/10.1016/j.clay.2017.05.027

    Article  CAS  Google Scholar 

  35. Zhang G, He Z, Xu W (2012) A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem Eng J 183:315–324. https://doi.org/10.1016/j.cej.2011.12.085

    Article  CAS  Google Scholar 

  36. Saha I, Ghosh A, Nandi D, Gupta K, Chatterjee D, Ghosh UC (2015) β-Cyclodextrin modified hydrous zirconium oxide: synthesis, characterization and defluoridation performance from aqueous solution. Chem Eng J 263:220–230. https://doi.org/10.1016/j.cej.2014.11.039

    Article  CAS  Google Scholar 

  37. Parashar K, Ballav N, Debnath S, Pillay K, Maity A (2017) Hydrous ZrO2 decorated polyaniline nanofibres: synthesis, characterization and application as an efficient adsorbent for water defluoridation. J Colloid Interface Sci 508:342–358. https://doi.org/10.1016/j.jcis.2017.08.044

    Article  CAS  PubMed  Google Scholar 

  38. Lutfullah, Rashid M, Haseen U, Rahman N (2014) An advanced Cr(III) selective nano-composite cation exchanger: synthesis, characterization and sorption characteristics. J Ind Eng Chem 20:809–817. https://doi.org/10.1016/j.jiec.2013.06.010

    Article  CAS  Google Scholar 

  39. Dhanpat R, Bruce MS, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349. https://doi.org/10.1021/ic00250a002

    Article  Google Scholar 

  40. Pan X, Cheng S, Zhang C, Jiao Y, Lin X, Dong W, Qi X (2021) Mussel-inspired magnetic pullulan hydrogels for enhancing catalytic degradation of antibiotics from biomedical wastewater. Chem Eng J 409. https://doi.org/10.1016/j.cej.2020.128203

    Article  Google Scholar 

  41. Qi X, Zeng Q, Tong X, Su T, Xie L, Yuan K, Xu J, Shen J (2021) Polydopamine/montmorillonite-embedded pullulan hydrogels as efficient adsorbents for removing crystal violet. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123359

  42. Su T, Wu L, Pan X, Zhang C, Shi M, Gao R, Qi X, Dong W (2019) Pullulan-derived nanocomposite hydrogels for wastewater remediation: synthesis and characterization. J Colloid Interface Sci 542:253–262. https://doi.org/10.1016/j.jcis.2019.02.025

    Article  CAS  PubMed  Google Scholar 

  43. Qi X, Liu R, Chen M, Li Z, Qin T, Qian Y, Zhao S, Liu M, Zeng Q, Shen J (2019) Removal of copper ions from water using polysaccharide-constructed hydrogels. Carbohydr Polym 209:101–110. https://doi.org/10.1016/j.carbpol.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  44. Wu P, Zhang Q, Dai Y, Zhu N, Dang Z, Li P, Wu J, Wang X (2011) Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma 164:215–219. https://doi.org/10.1016/j.geoderma.2011.06.012

    Article  CAS  Google Scholar 

  45. Gomez-Gonzalez SE, Carbajal-Arizaga GG, Manriquez-Gonzalez R, De la Cruz-Hernandez W, Gomez-Salazar S (2014) Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups. Mater Res Bull 59:394–404. https://doi.org/10.1016/j.materresbull.2014.07.035

    Article  CAS  Google Scholar 

  46. Lesaoana M, Pakade VE, Chimuka L (2019) Crosslinker-less surface-imprinted Macadamia derived activated carbons for trace Cr(III) removal from aqueous solution. Environ Inno. https://doi.org/10.1016/j.eti.2019.100336

  47. Fonseca-Correa R, Giraldo L, Moreno-Piraján JC (2013) Trivalent chromium removal from aqueous solution with physically and chemically modified corncob waste. J Anal Appl Pyrolysis 101:132–141. https://doi.org/10.1016/j.jaap.2013.01.019

    Article  CAS  Google Scholar 

  48. Zhang F, Lan J, Zhao Z, Yang Y, Tan R, Song W (2012) Removal of heavy metal ions from aqueous solution using Fe3O4-SiO2-poly(1,2-diaminobenzene) core-shell sub-micron particles. J Colloid Interface Sci 387:205–212. https://doi.org/10.1016/j.jcis.2012.07.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by Liaoning Province (Jinzhou) Fur Green Manufacturing Industry Technology Innovation Strategic Alliance [201854], Research on resource recycling technology of tanned chromium-containing waste dander [2018020190-301], The “Seedling” Project named “Research on Graphene-based 3D Material Construction and Key Technologies for Industrialization Application” for Youth Science and Technology Talents of Education Department of Liaoning Province (LQ2020011), Study on the deep removal of heavy metal chromium from industrial wastewater in the upper reaches of Daling River estuary [BDHYYJY2020013] (This study were supported by the Open Fund of Institute of Ocean Research, Bohai University), National Natural Science Foundation of China [21878024], Innovation Team Project of Liaoning Province [LT2015001], and Innovation Team Project of Liaoning Higher University [2018479-14].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyi Yang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service or company. No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary Information 1 (DOCX 884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Tao E, Yang, S. et al. A New Montmorillonite-Based Porous Composites: Effectively Removal of Cr(III)-Organic Complexes in Tannery Wastewater. J Polym Environ 30, 308–318 (2022). https://doi.org/10.1007/s10924-021-02193-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02193-4

Keywords

Navigation