Skip to main content
Log in

An Environmentally Friendly Process for Textile Wastewater Treatment with a Medium-Chain-Length Polyhydroxyalkanoate Film

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) film containing 39.25 mol% 3-hydroxyhexadecanoic acid (3HHD) was developed using a solution casting method. The pore sizes of the mcl-PHA film ranged from 150 to 250 nm. The thermal properties of the mcl-PHA film were characterised. The endothermic melting temperature (Tm) was 71.0 °C, the glass transition temperature (Tg) was about 1.1 °C, and the crystallinity (Xc) was 40.8%. The dye removal efficiency of mcl-PHA was evaluated under the following four different conditions: (a) dark, (b) sunlight, (c) ultraviolet (UV) light, and (d) fluorescent light. The highest dye removal of 49.7% was observed under sunlight after 210 min of treatment. The treated textile wastewater was also evaluated for the removal of suspended solids (SS), total solids (TS), and total dissolved solids (TDS), and the chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were also evaluated. The results indicated that after treatment with the mcl-PHA film the dye wastewater had low COD and BOD and low SS, TS, and TDS. The COD was reduced by more than 61.0% after 135 min, and all tested values passed the requirements given by the National Standards-Waste Discharge Quality Standards for Industrial Units and Projects (Thailand).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hsu TC, Chiang CS (1997) J Environ Sci Health C 32:1921

    Google Scholar 

  2. Pala A, Tokat E (2002) Water Res 36:2920

    Article  CAS  PubMed  Google Scholar 

  3. Kim TH, Park D, Yang J, Kim S (2004) J Hazardous Mater 112:95–103

    Article  CAS  Google Scholar 

  4. Gao BY, Yue QY, Wang Y, Zhou WZ (2007) J Environ Manag 82:167

    Article  CAS  Google Scholar 

  5. Bhatia SC (2017) Pollution control in textile industry. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Sivaram NM, Gopal PM, Barik D (2019) Energy from toxic organic waste for heat and power generation. Woodhead Publishing, Cambridge

    Google Scholar 

  7. Parisi ML, Fatarella E, Spinelli D, Pogni R, Basosi R (2015) J Clean Prod 108:514

    Article  CAS  Google Scholar 

  8. Georgiou D, Aivazidis A, Hatiras J, Gimouhopoulos K (2003) Water Res 37:2248

    Article  CAS  PubMed  Google Scholar 

  9. Merzouk B, Madani K, Sekki A (2010) Desalination 250:573

    Article  CAS  Google Scholar 

  10. Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K (2002) Dyes Pigm 52:69

    Article  CAS  Google Scholar 

  11. Ustun GE, Solmaz SKA, Birgul A (2007) Resour Conserv Recycl 52:425

    Article  Google Scholar 

  12. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) J Environ Manage 182:351

    Article  CAS  PubMed  Google Scholar 

  13. Ozturk E, Karaboyacı M, Yetis U, Yigit NO, Kitis M (2015) J Clean Prod 88:116

    Article  CAS  Google Scholar 

  14. Kang SF, Chen MC (1997) Water Sci Technol 36:215

    Article  CAS  Google Scholar 

  15. Robinson T, Mcmullan G, Marchant R, Nigham P (2001) Bioresour Technol 77:247

    Article  CAS  PubMed  Google Scholar 

  16. Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, Lee YF (2011) Appl Microbiol Biotechnol 89:1373

    Article  CAS  PubMed  Google Scholar 

  17. Sridewi N, Lee YF, Sudesh K (2011) Hindawi 11:597854

    Google Scholar 

  18. David C, Arivazhagan M, Balamurali MN, Shanmugarajan D (2015) Hindawi 9:195879

    Google Scholar 

  19. Heitmann AP, Patrício PSO, Coura IR, Pedroso EF, Souza PP, Mansur HS, Mansur A, Oliveira LCA (2016) Appl Catal B 189:141

    Article  CAS  Google Scholar 

  20. Lee SY (1996) Biotechnol Bioeng 49:1

    Article  CAS  PubMed  Google Scholar 

  21. Sudesh K, Abe H, Doi Y (2000) Prog Polym Sci 25:1503

    Article  CAS  Google Scholar 

  22. Satoh Y, Tajima K, Nakamoto S, Xuerong H, Matsushima T, Ohshima T, Kawano S, Erata T, Dairi T, Munekata M (2011) J Appl Microbiol 111:811–817

    Article  CAS  PubMed  Google Scholar 

  23. Choonut A, Prasertsan P, Klomklao S, Sangkharak K (2020) J Polym Environ 28:2410–2421

    Article  CAS  Google Scholar 

  24. Singh AK, Bhati R, Mallick N (2015) Curr Biotechnol 4:65

    Article  CAS  Google Scholar 

  25. Akmil-Başar C, Önal Y, Kiliçer T, Eren D (2005) J Hazardous Mater 127:73

    Article  CAS  Google Scholar 

  26. Baldez EE, Robaina NF, Cassella JR (2008) J Hazardous Mater 159:580

    Article  CAS  Google Scholar 

  27. Cheung H, Tanke RS, Torrence GP (2011) Acetic Acid, Ullmann’s encyclopedia of industrial chemistry. Wiley Online Library, Hoboken

    Google Scholar 

  28. Terada M, Marchessault RH (1999) Int J Biol Macromol 25:207

    Article  CAS  PubMed  Google Scholar 

  29. Jacquel N, Lo CW, Wu HS, Wei YH, Wang SS (2007) AIChE J 53:2704

    Article  CAS  Google Scholar 

  30. Tardiff RG (1977) J Am Water Works Assoc 69:658

    Article  CAS  Google Scholar 

  31. Weisel CP, Jo WK (1996) Environ Health Perspect 104:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choonut A, Prasertsan P, Klomklao S, Sangkharak K (2020) Curr microbial 77:3044–3056

    Article  CAS  Google Scholar 

  33. Anbukarasu P, Sauvageau D, Elias A (2015) Sci Rep 5:17884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tanikkul P, Sullivan GL, Sarp S, Pisutpaisal N (2020) Case Stud Chem Environ Eng 2:100045

    Article  Google Scholar 

  35. Sangkharak K, Paichid N, Yunu T, Prasertsan P (2020) J Polym Environ 28:1893

    Article  CAS  Google Scholar 

  36. Binhayeeding N, Yunu T, Pichid N, Klomklao S, Sangkharak K (2020) Process Biochem 95:174

    Article  CAS  Google Scholar 

  37. Song JJ, Yoon SC, Yu SM, Lenz RW (1998) Int J Biol Macromol 23:165

    Article  CAS  PubMed  Google Scholar 

  38. Sangkharak K, Prasertsan P (2012) J Gen Appl Microbil 58:173

    Article  CAS  Google Scholar 

  39. APHA, Awwa, WEF (2012) Standard methods for examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  40. Prat D, Hayler J, Wells A (2014) Green Chem 16:4546

    Article  CAS  Google Scholar 

  41. Kim M (2005) Korean J Hum Ecol 14:321

    Google Scholar 

  42. Yalpani M, Marchessault RH, Morin FG, Monasterios CJ (1991) Macromolecules 24:6046

    Article  CAS  Google Scholar 

  43. Yalpani M (1993) US patent 5191016

  44. Volova T, Kiselev E, Vinogradova O, Nikolaeva E, Chistyakov A, Sukovatiy A, Shishatskaya E (2014) PLoS ONE 9:1

    Article  CAS  Google Scholar 

  45. Bergstrand A, Uppström S, Larsson A (2014) Int J Polym Sci 958975:8

    Google Scholar 

  46. Bergstrand A, Andersson H, Cramby J, Sott K, Larsson K (2012) J Biomater Nanobiotechnol 3:431

    Article  CAS  Google Scholar 

  47. Zhijiang C (2006) J Mater Sci Mater Med 17:1297

    Article  PubMed  CAS  Google Scholar 

  48. Ke Y, Liu C, Zhang X, Xiao M, Wu G (2017) Macromol Mater Eng 1700258:1

    Google Scholar 

  49. Martinez-Sanz M, Villano M, Oliveira C, Albuquerque MGE, Majone M, Reis M, Lopez-Rubio A, Lagaron JM (2014) New Biotechnol 31:364

    Article  CAS  Google Scholar 

  50. Sathiyanarayanan G, Bhatia SK, Song HS, Jeon JM, Kim J, Kyung Lee Y, Kim YG, Yang YH (2017) Int J Biol Macromol 97:710

    Article  CAS  PubMed  Google Scholar 

  51. Wellen RMR, Rabello MS, Araujo Júnior IC, Fechine GJM, Canedo EL (2015) Polímeros 25:296

    Article  CAS  Google Scholar 

  52. Chen J, Zhang L, Chen J, Chen G (2007) Chin J Chem Eng 15:391

    Article  CAS  Google Scholar 

  53. Loureiro NC, Ghosh S, Viana JC, Esteves JL (2015) Polym Plast Technol Eng 54:350

    Article  CAS  Google Scholar 

  54. Kong Y, Hay JN (2002) Polymer 43:3873

    Article  CAS  Google Scholar 

  55. Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Biomacromol 6:580

    Article  CAS  Google Scholar 

  56. Matsusaki H, Abe H, Doi Y (2000) Biomacromol 1:17

    Article  CAS  Google Scholar 

  57. Savenkova L, Gercberga Z, Bibers I, Kalnin M (2000) Process Biochem 36:445

    Article  CAS  Google Scholar 

  58. Kim JS, Renekar DH (1999) Polym Compos 20:124

    Article  CAS  Google Scholar 

  59. Marschessault RH, Monasterios CJ, Morin FG, Sundararajan PR (1990) Int J Biol Macromol 12:158

    Article  Google Scholar 

  60. Ye HM, Li H, Yang Y (2016) Colloid Polym Sci 294:795

    Article  CAS  Google Scholar 

  61. Gopi S, Kontopoulou M, Ramsay BM, Ramsay JA (2018) Int J Biol Macromol 119:1248

    Article  CAS  PubMed  Google Scholar 

  62. Shamala TR, Divyashree MS, Davis R, Latha Kumari KS, Vijayendra SVN, Raj B (2009) Indian J Microbiol 49:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pandey A, Ahmed S, Kumar V, Singh P, Kothari R (2016) In book: Emerging energy alternative for sustainable environment

  64. Singh B, Sharma N (2008) Polym Degrad Stab 93:561

    Article  CAS  Google Scholar 

  65. Prado AGS, Costa LL (2009) J Hazardous Mater 169:297

    Article  CAS  Google Scholar 

  66. Kuhn KP, Chaberny IF, Massholder K, Stickler M, Benz VW, Sonntag H (2003) Chemosphere 53:71

    Article  CAS  PubMed  Google Scholar 

  67. Bergamini RBM, Dezotti M, De Araujo LRR, Azevedo B (2008) J Adv Oxid Technol 11:308

    CAS  Google Scholar 

  68. Yew SP, Tang HY, Sudesh K (2006) Polym Degrad Stab 91:1800

    Article  CAS  Google Scholar 

  69. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Chemosphere 46:1173

    Article  CAS  PubMed  Google Scholar 

  70. Carlos AKG, Wypych F, Moraes SG, Duran N, Nagata N, Peralta-Zamora P (2000) Chemosphere 40:433

    Article  Google Scholar 

  71. Standord U, Gray KA, Kamat PV (1996) HCR Adv Educ Rev Het Chem Rev 3:77

    Article  Google Scholar 

  72. Sadeghi-Kiakhani M, Arami M, Gharanjig K (2012) J Appl Polym Sci 127:1

    Google Scholar 

  73. Sen F, Demirbas O, Harbi Calımlı M, Aygunl A, Hakkı Alma M, Salih Nas M (2018) Appl Water Sci 8:206

    Article  CAS  Google Scholar 

  74. Anithaa T, Senthil Kumar S, Sathish Kumar K (2016) J Water Process Eng 13:127

    Article  Google Scholar 

  75. Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS (2017) Arab J Chem 10:3229

    Article  CAS  Google Scholar 

  76. Riis V, Mai W (1988) J Chromatogr 445:245

    Article  Google Scholar 

  77. Mohd Rafatullah M, Ismail S, Ahmad A (2019) Water 11:1304

    Article  CAS  Google Scholar 

  78. Chaber P, Kwiecien M, Zięba M, Sobota M, Adamus G (2017) RSC Adv 7:35096

    Article  CAS  Google Scholar 

  79. Gunatilake SK (2015) Methods 1:14

    Google Scholar 

  80. Du Q, Wei H, Li AM (2018) Environ Chem 37:1293

    Google Scholar 

  81. Qu P, Zhao J, Shen T, Hidaka H (1998) J Mol Catal A Chem 129:257

    Article  CAS  Google Scholar 

  82. Iwata T, Doi Y, Nakayama S, Sasatsuki H, Teramachi S (1999) Int J Biol Macromol 25:169

    Article  CAS  PubMed  Google Scholar 

  83. Hiraishi A, Khan ST (2003) Appl Microbiol Biotechnol 61:103

    Article  CAS  PubMed  Google Scholar 

  84. Laycock B, Nikolic M, Colwell JM, Gauthier E, Halley P, Bottle S, George G (2017) Prog Polym Sci 71:144 

    Article  CAS  Google Scholar 

  85. Numata K,  Abe H,  Iwata T (2009) Materials 2:1104

    Article  CAS  PubMed Central  Google Scholar 

  86. Crittenden JC, Zhang Y, Hand DW, Perram DL, Marchand EG (1996) Water Environ Res 68:270

    Article  CAS  Google Scholar 

  87. Gouvêa CAK, Wypych F, Moraes SG, Durán N, Peralta-Zamora P (2000) Chemosphere 40:443

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Thailand Research Fund (TRF) Grant for Researcher (project number RSA 6180066), Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailand and Development Institute at Thaksin University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanokphorn Sangkharak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choonut, A., Prasertsan, P., Klomklao, S. et al. An Environmentally Friendly Process for Textile Wastewater Treatment with a Medium-Chain-Length Polyhydroxyalkanoate Film. J Polym Environ 29, 3335–3346 (2021). https://doi.org/10.1007/s10924-021-02121-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02121-6

Keywords

Navigation