Skip to main content
Log in

Trends in the Phase Separation Temperature Optimization of a Functional and Thermo-pH Responsive Terpolymer of Poly (N-isopropylacrylamide-co-N-(2-(dimethylamino)ethyl) Acrylamide-co-vanillin Acrylate)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To optimize the phase separation temperature of poly (N-isopropylacrylamide) two monomers have been used to fabricate a series of three functional and thermo-pH terpolymers. N-(2-(dimethylamino)ethyl)acrylamide (DMAEAm) acts as a hydrophilic and pH-responsive monomer and 4-formyl-2-methoxyphenylacrylate or vanillin acrylate (VA) as hydrophobic and functional monomer both monomers have been synthesized in a one-step reaction. They were investigated by 1H, 13C NMR, and FTIR and demonstrated good agreement with their chemical structures. Dual responsive functional terpolymers have been fabricated in different molar ratios of (DMAEAm) (10, 15, and 20 mol%) with 10 mol% of VA; they have been investigated by chemical methods such as 1H, and FTIR as well. The physical characterization has also been achieved using GPC for molecular weight and molecular weight distributions, DSC for glass transition temperature. The vital point is studying the phase separation temperature or the lower critical solution temperature of the polymer solution, and the relative influence of DMAEAm and VA on transition temperature Tc of terpolymer solution; it has been recorded by turbidity test using UV–Vis-spectroscopy as the change of transmittance with temperature, on the other hand using micro-DSC of the polymer solution was tested. This optimization in the poly (NIPAAm) characterization encourages the application of the new terpolymer as a biosensor.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Elizabeth RG (2020) Reflections on the evolution of smart polymers. Isr J Chem 60:75–85. https://doi.org/10.1002/ijch.201900075

    Article  CAS  Google Scholar 

  2. Tanaka M, Nakahata M, Linke P, Philipp L, Stefan K (2020) Stimuli-responsive hydrogels as a model of the dynamic cellular microenvironment. Polym J 52:861–870. https://doi.org/10.1038/s41428-020-0353-6

    Article  CAS  Google Scholar 

  3. Abdelaty MSA (2020) The effect hydrophilic/hydrophobic interaction of 2 ((dimethylamino)methyl) 4 formyl 6 methoxyphenyl acrylate and 4 acetylphenyl acrylate monomers on the phase transition temperature of N isopropylacrylamide terpolymers. J Polym Environ 28:2584–2598. https://doi.org/10.1007/s10924-020-01790-z

    Article  CAS  Google Scholar 

  4. Abdelaty MSA (2020) the influence of vanillin acrylate derivative on the phase separation temperature of environmental photo-cross-linked N-isopropylacrylamide copolymer and hydrogel thin films. J Polym Environ 28:2599–2615. https://doi.org/10.1007/s10924-020-01793-w

    Article  CAS  Google Scholar 

  5. Abdelaty MSA (2020) Influence of vanillin acrylate and 4-acetylphenyl acrylate hydrophobic functional monomers on phase separation of N-isopropylacrylamide environmental terpolymer: fabrication and characterization. Polym Bull 77:2905–2922. https://doi.org/10.1007/s00289-019-02890-0

    Article  CAS  Google Scholar 

  6. Huanqing C, Qilong Z, Li Z, Xuemin D (2020) Intelligent polymer-based bioinspired actuators: from monofunction to multifunction. Adv Intell Syst 2000138:1–15. https://doi.org/10.1002/aisy.202000138

    Article  Google Scholar 

  7. Chen J-K, Chang C-J (2014) Fabrication and applications of stimuli-responsive polymer films and patterns on surface. Materials 7:805–875. https://doi.org/10.3390/ma7020805

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mengle K, Xinwen P, Hao C, Peiwen L, Bo P, Kai Z (2020) pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Adv 10:4860–4868

    Article  Google Scholar 

  9. Naruphorn D, Farzad S, Juliette H, Daniel C (2020) Controlling release kinetics of pH-responsive polymer nanoparticles. Polym Chem 11:1752–1762. https://doi.org/10.1039/C9PY01946D

    Article  Google Scholar 

  10. Nayeleh D, Changhe Z, Sarah SK, Angus PRJ, Georgina KS (2019) pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40:e1800917. https://doi.org/10.1002/marc.201800917

    Article  CAS  Google Scholar 

  11. Hyuk L, Hongsuk P, Gwang JN, Eun SL (2018) pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr Polym 202:323–333. https://doi.org/10.1016/j.carbpol.2018.08.141

    Article  CAS  Google Scholar 

  12. Sijie X, Matthew JW (2020) Temperature-responsive supramolecular hydrogels. J Mater Chem B 1:11. https://doi.org/10.1039/D0TB01814G

    Article  Google Scholar 

  13. Liu Z, Zhang S, He B, Shoujuan W, Fangong K (2020) Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems. Cellulose. https://doi.org/10.1007/s10570-020-03426-w

    Article  Google Scholar 

  14. Wang Y, Gong J, Hu W (2020) Transparency of temperature-responsive shape-memory gels tuned by a competition between crystallization and glass transition. Chin J Polym Sci. https://doi.org/10.1007/s10118-020-2456-0

    Article  Google Scholar 

  15. Augustinus JJK, Nadia CMZ, Dirk JB, Albert PHJS (2019) Temperature-responsive, multicolor-changing photonic. Polym ACS Appl Mater Interfaces 31:28172–28179. https://doi.org/10.1021/acsami.9b08827

    Article  CAS  Google Scholar 

  16. Qiao S, Wang H (2018) Temperature-responsive polymers: synthesis, properties, and biomedical applications. Nano Res 11:5400–5423. https://doi.org/10.1007/s12274-018-2121-x

    Article  CAS  Google Scholar 

  17. Tao X, Ting L, Wei-Feng Z, Cheng-Sheng Z (2019) Ionic-strength responsive zwitterionic copolymer hydrogels with tunable swelling and adsorption behaviors. Langmuir 35:1146–1155

    Article  Google Scholar 

  18. Fatma Ç, Papatya K, Grace A, Zeynep AA (2020) Ionic strength-responsive poly(sulfobetaine methacrylate) microgels for fouling removal during ultrafiltration. React Funct Polym 156:104738. https://doi.org/10.1016/j.reactfunctpolym.2020.104738

    Article  CAS  Google Scholar 

  19. Aleksey DD, Jesper de Claville C (2020) Mechanical response and equilibrium swelling of thermoresponsive copolymer hydrogels. Polym Int 69:974–984

    Article  Google Scholar 

  20. Wang J, Suzuki R, Ogata K, Nakamura T, Dong A, Weng W (2020) Near-linear responsive and wide-range pressure and stretch sensor based on hierarchical graphene-based structures via solvent-free preparation. Polymers 12:1814. https://doi.org/10.3390/polym12081814

    Article  CAS  PubMed Central  Google Scholar 

  21. Valentina M, Pierfrancesco C, Marta G, Veronica BT (2017) Light-responsive polymer micro- and nano-capsules. Polymers 9:1–19. https://doi.org/10.3390/polym9010008

    Article  CAS  Google Scholar 

  22. Zhou C, Shi Z, Xu F, Ying L, Haoyu T (2020) Preparation and properties of thermo- and pH-responsive polypeptide bearing OEG and aldehyde pendants. Colloid Polym Sci 298:1293–1302. https://doi.org/10.1007/s00396-020-04712-6

    Article  CAS  Google Scholar 

  23. Castro-Hernández A, Cortez-Lemus NA (2019) Thermo/pH responsive star and linear copolymers containing a cholic acid-derived monomer, N-isopropylacrylamide and acrylic acid: synthesis and solution properties. Polymers 11:1859. https://doi.org/10.3390/polym11111859

    Article  CAS  PubMed Central  Google Scholar 

  24. Dirk S (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  Google Scholar 

  25. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin (part 2): temperature responsive layer A, functional, temperature and pH layer B. Polym Bull 11:4837–4858. https://doi.org/10.1007/s00289-018-2297-y

    Article  CAS  Google Scholar 

  26. Weizhong Y, Wen G, Hui Z, Jie R (2013) Tunable thermo-, pH- and light-responsive copolymer micelles. Polym Chem 4:3934–3937. https://doi.org/10.1039/C3PY00478C

    Article  Google Scholar 

  27. Shan S, Qianman W, Tao W, Shuping R, Yu G, Na W (2014) Thermo-, pH-, and light-responsive poly(N-isopropylacrylamide-co-methacrylic acid)–Au hybrid microgels prepared by the in situ reduction method based on Au-thiol chemistry. J Phys Chem B 118:7177–7186. https://doi.org/10.1021/jp5027477

    Article  CAS  Google Scholar 

  28. Tao X, Ting L, Wei-Feng Z, Chang-Sheng Z (2018) Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. New J Chem 42:5323–5333. https://doi.org/10.1039/C8NJ00039E

    Article  Google Scholar 

  29. St K, Ilja V, Gerhard F-P, Gregor T (2009) pH and ionic strength responsive polyelectrolyte block copolymer micelles prepared by ring opening metathesis polymerization. J Polym Sci A 47:1178–1191. https://doi.org/10.1002/pola.23229

    Article  CAS  Google Scholar 

  30. Fujian H, Wei-Ching L, Yang Sung S, Rachel N, Chun-Hua L, Itamar W (2016) Light-responsive and pH-responsive DNA microcapsules for controlled release of loads. J Am Chem Soc 138:8936–8945. https://doi.org/10.1021/jacs.6b04773

    Article  CAS  Google Scholar 

  31. Ying L, Hongmei C, Dian L, Wenxi W, Ye L, Shaobing Z (2015) pH-responsive shape memory poly(ethylene glycol)–poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 23:12988–12999

    Google Scholar 

  32. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62. https://doi.org/10.1007/3-540-56791-7-1

    Article  CAS  Google Scholar 

  33. Shengyi D, Jan H, Jiayin Y, Christoph AS (2016) Lower critical solution temperature (LCST) phase behavior of an ionic liquid and its control by supramolecular host-guest interactions. Chem Commun 52:7970–7973

    Article  Google Scholar 

  34. Fei W, Patrick A, Lorenz R, Haodong Z, Michael S, Britta N (2019) Progress report on phase separation in polymer solutions. Adv Mater 31:1806733. https://doi.org/10.1002/adma.201806733

    Article  CAS  Google Scholar 

  35. Jan S, Seema A (2013) Polymers with upper critical solution temperature in aqueous solution: unexpected properties from known building blocks. ACS Macro Lett 7:597–600. https://doi.org/10.1021/mz400227y

    Article  CAS  Google Scholar 

  36. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci 2:1441–1455. https://doi.org/10.1080/10601326808051910

    Article  CAS  Google Scholar 

  37. Xia J, Dubin PL (1994) Protein–polyelectrolyte complexes. In: Dubin P, Bock J, Davis R, Schulz DN, Thies C (eds) Macromolecular complexes in chemistry and biology. Springer, Berlin

    Google Scholar 

  38. Kawamura A, Miyata T (2014) pH-responsive polymer. Encyclopedia of polymeric nanomaterials. Springer, Berlin

    Google Scholar 

  39. Yang L, Zhaohui W, Qi W, Min L, Gang H, Baran DS, Jinming G (2016) Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polym Chem 7:5949–5956. https://doi.org/10.1039/C6PY01104G

    Article  CAS  Google Scholar 

  40. Zefeng S, Ke W, Chengqiang G, Shuang W, Wangqing Z (2016) A new thermo-, pH-, and CO2-responsive homopolymer of poly[N-[2-(diethylamino)ethyl]acrylamide]: is the diethylamino group underestimated? Macromolecules 49:162–171

    Article  Google Scholar 

  41. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin. J Polym Environ 26:2243–2256. https://doi.org/10.1007/s10924-017-1126-y

    Article  CAS  Google Scholar 

  42. Abdelaty MSA (2019) Layer by layer photo-cross-linked environmental functional hydrogel thin films based on vanillin: part 3. J Polym Environ 27:1212–1225. https://doi.org/10.1007/s10924-019-01421-2

    Article  CAS  Google Scholar 

  43. Benrebouh A, Avoce D, Zhu XX (2001) Thermo- and pH-sensitive polymers containing cholic acid derivatives. Polymer 42:4031–4038. https://doi.org/10.1016/S0032-3861(00)00837-5

    Article  CAS  Google Scholar 

  44. Kocak G, Tuncer C, Bütün V (2017) pH-Responsive polymers. Polym Chem 8:144–176. https://doi.org/10.1039/C6PY01872F

    Article  CAS  Google Scholar 

  45. Ramkissoon-Ganorkar C, Baudys M, Wan Kim S (2000) Effect of ionic strength on the loading efficiency” of the model polypeptide/protein drugs in pH-/temperature-sensitive polymers. J Biomat Sci Polym Ed 11:45–54

    Article  CAS  Google Scholar 

  46. Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide. J Appl Polym Sci 11:28–1139. https://doi.org/10.1002/app.10137

    Article  Google Scholar 

  47. Sarwan T, Kumar P, Choonara YE, Pillay V (2020) Hybrid thermo-responsive polymer systems and their biomedical applications. Front Mater 7:73. https://doi.org/10.3389/fmats.2020.00073

    Article  Google Scholar 

  48. Abdelaty MSA (2018) Preparation and characterization of new environmental functional polymers based on vanillin and N-isopropylacrylamide for post polymerization. J Polym Environ 26:636–646. https://doi.org/10.1007/s10924-017-0960-2

    Article  CAS  Google Scholar 

  49. Abdelaty MSA, Kuckling D (2018) Poly (N-isopropyl acrylamide-co-vanillin acrylate) dual responsive functional copolymers for grafting biomolecules by Schiff’s base click reaction. Open J Org Polym Mater 8:15–32. https://doi.org/10.4236/ojopm.2018.82002

    Article  CAS  Google Scholar 

  50. Patrick V, Holger F (2020) Amino-functional polyethers: versatile, stimuli-responsive polymers. Polym Chem 11:3940–3950. https://doi.org/10.1039/D0PY00466A

    Article  Google Scholar 

  51. Yiwen P, Odilia RS, Jing Yang Q, Peter JR, Andrew BL (2015) pH-, thermo- and electrolyte-responsive polymer gels derived from a well-defined, RAFT-synthesized, poly(2-vinyl-4,4-dimethylazlactone) homopolymer via one-pot post-polymerization modification. Eur Polym J 62:204–213

    Article  Google Scholar 

  52. Camille L, De Marie-Claire P-G, Kam Chiu T, Sébastien L, Daniel T (2015) Aldehyde-functional copolymers based on poly(2-oxazoline) for post-polymerization modification. Eur Polym J 62:322–330. https://doi.org/10.1016/j.eurpolymj.2014.08.026

    Article  CAS  Google Scholar 

  53. Matthias C, Thomas J (2011) Photoinduced conjugation of aldehyde functional polymers with olefins via [2 + 2]-cycloaddition. Macromolecules 44(20):7969–7976. https://doi.org/10.1021/ma2017748

    Article  CAS  Google Scholar 

  54. Fache M, Darroman E, Besse V, Auvergne R, Sylvain Caillol S, Boutevina B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987–1998. https://doi.org/10.1039/C3GC42613K

    Article  CAS  Google Scholar 

  55. Ananda SA, Bernard W, Ashfaqur R (2012) Vanillin based polymers: I. An electrochemical route to polyvanillin. Green Chem 14:2395–2397. https://doi.org/10.1039/C2GC35645G

    Article  Google Scholar 

  56. Abdelaty MSA, Kuckling D (2016) Synthesis and characterization of new functional photo cross-linkable smart polymers containing vanillin derivatives. Gels 2:1–13. https://doi.org/10.3390/gels2010003

    Article  CAS  Google Scholar 

  57. Firdaus M, Meier AR (2013) Renewable copolymers derived from vanillin and fatty acid derivatives. Eur Polym J 49:156–166. https://doi.org/10.1016/j.eurpolymj.2012.10.017

    Article  CAS  Google Scholar 

  58. Abdelaty MSA (2018) Preparation and characterization of environmental functional poly(styrene-co-2-[(diethylamino)methyl]-4-formyl-6-methoxy-phenyl acrylate) copolymers for amino acid post polymerization. Open J Polym Chem 8:41–55. https://doi.org/10.4236/ojpchem.2018.83005

    Article  CAS  Google Scholar 

  59. Abdelaty MSA (2018) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4 formyl-6-methoxyphenylacrylate) environmental functional copolymers: synthesis, characterizations, and grafting with amino acids. Biomolecules 8:138. https://doi.org/10.3390/biom8040138

    Article  CAS  PubMed Central  Google Scholar 

  60. Kuckling D, Adler H-JP, Arndt K-F, Ling L, Habicher WD (2000) Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide) copolymers. Macromol Chem Phys 201:273–280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Paderborn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A. Trends in the Phase Separation Temperature Optimization of a Functional and Thermo-pH Responsive Terpolymer of Poly (N-isopropylacrylamide-co-N-(2-(dimethylamino)ethyl) Acrylamide-co-vanillin Acrylate). J Polym Environ 29, 3116–3129 (2021). https://doi.org/10.1007/s10924-021-02096-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02096-4

Keywords

Navigation