Skip to main content


Log in

The Mass Production of Lignin Fibres by Means of Needleless Electrospinning

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript


Lignin, a cheap renewable natural polymer, can be used as a precursor for the production of carbon fibres, its conversion into which is significantly faster than that of polyacrylonitrile. Lignin can be fractionated in various solvents via dissolution to decrease its polydispersity. Fractions with a higher molecular weight distribution can then be used in solvent-based spinning technologies such as electrospinning. We selected several solvent systems according to the Hansen solubility theory and subsequently tested them for solubility and electro-spinability. The selected solvent systems were then successfully tested for use in the needleless electrospinning process due to their potential for mass production. The solutions used in the electrospinning process needed high concentrations of lignin, which led to a high degree of viscosity. Therefore, we measured the relaxation times and viskosity for selected solutions, a factor that plays a pivotal role in terms of the production of smooth fibres. Finally, these solutions were tested for electrospinning using alternating current. This technology brings a new possibility in mass production of lignin fibres due to its high productivity and ease of use. Such materials can be used in a number of applications such as batteries, supercapacitors or for the production of composite materials. They provide a cheap and renewable natural polymer source which can easily be transformed into a carbon nanofibrous layer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  1. Glasser WG, Sarkanen S, American Chemical Society (1989) Lignin: properties and materials. American Chemical Society, Washington, DC

    Google Scholar 

  2. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728.

    Article  CAS  Google Scholar 

  3. Ruiz-Rosas R, Bedia J, Lallave M et al (2010) The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 48:696–705.

    Article  CAS  Google Scholar 

  4. Ramakrishna S, Fujihara K, Teo W-E et al (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Book  Google Scholar 

  5. Tolbert A, Akinosho H, Khunsupat R et al (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels BioprodBioref 8:836–856.

    Article  CAS  Google Scholar 

  6. Moerck R, Yoshida H, Kringstad KP, Hatakeyama H (1986) Fractionation of kraft lignin by successive extraction with organic solvents. 1. Functional groups (13)C-NMR-spectra and molecular weight distributions. Holzforschung 40:53–58

    Google Scholar 

  7. Rohde V, Böringer S, Tübke B et al (2019) Fractionation of three different lignins by thermal separation techniques-a comparative study. GCB Bioenergy 11:206–217.

    Article  CAS  Google Scholar 

  8. Jääskeläinen A-S, Liitiä T, Mikkelson A, Tamminen T (2017) Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind Crops Prod 103:51–58.

    Article  CAS  Google Scholar 

  9. Nordström Y, Norberg I, Sjöholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129:1274–1279.

    Article  CAS  Google Scholar 

  10. Kumar M, Hietala M, Oksman K (2019) Lignin-based electrospun carbon nanofibers. Front Mater 6:62.

    Article  Google Scholar 

  11. Schlee P, Herou S, Jervis R et al (2019) Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. Chem Sci 10:2980–2988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425.

    Article  CAS  Google Scholar 

  14. Lukas D, Sarkar A, Pokorny P (2008) Self-organization of jets in electrospinning from free liquid surface: a generalized approach. J Appl Phys 103:084309.

    Article  CAS  Google Scholar 

  15. Jirsak O, Sanetrnik F, Lukas D et al. A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method

  16. Pokorny P, Kostakova E, Sanetrnik F et al (2014) Effective AC needleless and collectorless electrospinning for yarn production. Phys Chem Chem Phys 16:26816–26822.

    Article  CAS  PubMed  Google Scholar 


  18. Valtera J, Kalous T, Pokorny P et al (2019) Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Sci Rep 9:1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rezanowich A, Goring DAI (1960) Polyelectrolyte expansion of a lignin sulfonate microgel. J Colloid Sci 15:452–471.

    Article  CAS  Google Scholar 

  20. Costa CN, Teixeira VG, Delpech MC et al (2015) Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohyd Polym 133:245–250.

    Article  CAS  Google Scholar 

  21. Forward KM, Rutledge GC (2012) Free surface electrospinning from a wire electrode. Chem Eng J 183:492–503.

    Article  CAS  Google Scholar 

  22. Fang W, Yang S, Yuan T-Q et al (2017) Effects of various surfactants on alkali lignin electrospinning ability and spun fibers. IndEngChem Res 56:9551–9559.

    Article  CAS  Google Scholar 

  23. Balogh A, Farkas B, Verreck G et al (2016) AC and DC electrospinning of hydroxypropylmethylcellulose with polyethylene oxides as secondary polymer for improved drug dissolution. Int J Pharm 505:159–166.

    Article  CAS  PubMed  Google Scholar 

  24. Schlee P, Hosseinaei O, Baker D et al (2019) From waste to wealth: from kraft lignin to free-standing supercapacitors. Carbon 145:470–480.

    Article  CAS  Google Scholar 

  25. Cho M, Karaaslan M, Wang H, Renneckar S (2018) Greener transformation of lignin into ultralight multifunctional materials. J Mater Chem A 6:20973–20981.

    Article  CAS  Google Scholar 

  26. Liu HC, Chien A-T, Newcomb BA et al (2015) Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain ChemEng 3:1943–1954.

    Article  CAS  Google Scholar 

  27. Roman J, Neri W, Derré A, Poulin P (2019) Electrospun lignin-based twisted carbon nanofibers for potential microelectrodes applications. Carbon 145:556–564.

    Article  CAS  Google Scholar 

  28. Jayawickramage RAP, Ferraris JP (2019) High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes. Nanotechnology 30:155402.

    Article  Google Scholar 

  29. Vivo-Vilches J, Celzard A, Fierro V et al (2019) Lignin-based carbon nanofibers as electrodes for vanadium redox couple electrochemistry. Nanomaterials 9:106.

    Article  CAS  PubMed Central  Google Scholar 

  30. Beck RJ, Zhao Y, Fong H, Menkhaus TJ (2017) Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applications. J Water Process Eng 16:240–248.

    Article  Google Scholar 

  31. Camiré A, Espinasse J, Chabot B, Lajeunesse A (2018) Development of electrospun lignin nanofibers for the adsorption of pharmaceutical contaminants in wastewater. Environ Sci Pollut Res.

    Article  Google Scholar 

Download references


This work was funded by FORMAS (a Swedish research council for sustainable development), the Swedish Energy Agency and companies in the pulp and paper industry within the research project Lignin Value Chain, a part of the Innventia Research Programme 2015-2017.

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Mikeš.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikeš, P., Baker, D.A., Uhlin, A. et al. The Mass Production of Lignin Fibres by Means of Needleless Electrospinning. J Polym Environ 29, 2164–2173 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: