Skip to main content
Log in

Gelatin Films from Carp Skin Crosslinked by Gallic Acid and Incorporated with Chitosan/Tuna Lipid Fractions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Gelatin was extracted from carp skin and reticulated with gallic acid; afterward, gelatin samples were crosslinked with addition of chitosan produced from shrimp waste and, bleached oil and free fatty acids (FFA) extracted from tuna heads. Carp gelatin showed good yield (20.4%), hydroxyproline content of 13.8% and high gel strength (245 g). Chitosan presented 85%DD and MW of 159 kDa, and the tuna oil had 68.2% of unsaturated fatty acids, being around 29% of EPA and DHA. Films showed thickness, color, and transparencies characteristic of fish gelatins. Films crosslinked with gallic acid, incorporated with chitosan and the tuna lipid fractions showed better mechanical and permeation properties that the other films. FT-IR analysis showed that crosslinking let to an amides II and III decrease, a typical attribute in films with low water vapor permeability. All films presented higher melting temperatures than the pure gelatin film, indicating less thermal degradation and better quality. The results expressed that the incorporations of chitosan, bleached oil and FFA improved the properties of crosslinked gelatin films from carp skin. As all materials used in work are byproducts from fishery industry, this fact could collaborate to reduce the environmental impacts caused by their inadequate discards in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Virtanen S, Chowreddy RR, Irmak S, Honkapää K, Isom L (2017) J Polym Environ 25:1110

    Article  CAS  Google Scholar 

  2. Bonilla J, Sobral PJA (2016) Food Biosci 16:17

    Article  CAS  Google Scholar 

  3. Gómez–Guillén MC, Giménez B, Lópes–Caballero ME, Montero MP (2011) Food Hydrocoll 25:1813

    Article  Google Scholar 

  4. Sukhlaaied W, Riyajan S (2018) J Polym Environ 26:2708

    Article  CAS  Google Scholar 

  5. Scopel BS, Pretto GL, Corrêa JIP, Baldasso C, Dettmer A, Santana RMC (2020) J Polym Environ 28:1974

    Article  CAS  Google Scholar 

  6. Lv LC, Huang QY, Ding W, Xiao XH, Zhang HY, Xiong LX (2019) J Funct Foods 63:1

    Article  Google Scholar 

  7. Bandeira SF, Silva RSG, Moura JM, Pinto LAA (2017) J Aquat Food Prod Technol 26:447

    Article  CAS  Google Scholar 

  8. Karayannakidis PD, Zotos A (2016) J Aquat Food Prod Technol 25:65

    Article  CAS  Google Scholar 

  9. Zhang Q, Wang Q, Shun L, Lu J, Jiang S, Regenstein JM, Lin L (2016) Food Biosci 13:41

    Article  CAS  Google Scholar 

  10. Sinthusamran S, Benjakul S, Swedlund PJ, Hemar Y (2017) Food Biosci 20:88

    Article  CAS  Google Scholar 

  11. Bandeira SF, Silva RSG, Moura JM, Pinto LAA (2015) J Food Process Eng 38:613

    Article  CAS  Google Scholar 

  12. Phreecha N, Chinpa W (2019) J Polym Environ 27:1043

    Article  CAS  Google Scholar 

  13. Cai L, Shi H, Cao A, Jia J (2019) Sci Rep 9:1

    Google Scholar 

  14. Adilah ZAM, Hanani ZAN (2016) Food Biosci 16:66

    Article  Google Scholar 

  15. Santos JP, Esquerdo VM, Moura CM, Pinto LAA (2018) Colloid Surface A 539:184

    Article  CAS  Google Scholar 

  16. Silva RSG, Bandeira SF, Pinto LAA (2014) LWT – Food Sci Technol 57:580

    Article  CAS  Google Scholar 

  17. Yang H, Wang Y, Zhou P, Regenstein JM (2008) Food Hydrocoll 22:1541

    Article  CAS  Google Scholar 

  18. Tavassoli-Kafrani E, Goli SAH, Fathi M (2017) Int J Biol Macromol 103:1062

    Article  CAS  Google Scholar 

  19. AOAC (1995) Official methods of analysis, v.1, 16th edn. Association of official analytical chemists, Washington, DC

    Google Scholar 

  20. BSI (1975) Methods for sampling and testing gelatin (physical and chemical methods), British standard institution standard, London, UK

  21. Dash R, Foston M, Ragauskas AJ (2013) Carbohydr Polymers 91:638

    Article  CAS  Google Scholar 

  22. Moura JM, Farias BS, Rodrigues DAS, Moura CM, Dotto GL, Pinto LAA (2015) J Polym Environ 23:470

    Article  CAS  Google Scholar 

  23. Crexi VT, Monte ML, Souza–Soares LA, Pinto LAA (2010) Food Chem 119:945

    Article  CAS  Google Scholar 

  24. Crexi VT, Monte ML, Monte ML, Pinto LAA (2012) J Am Oil Chem Soc 89:329

    Article  CAS  Google Scholar 

  25. ASTM (2001a) Standard test methods for tensile properties on thin plastic sheeting. In: Standard designation D882–02, Annual book of ASTM, pp. 162–170

  26. ASTM (2001b) Standard test methods of water vapor transmission of materials. In: Standard designation E96/E96M-05, Annual book of ASTM, pp. 406–413

  27. Arfat AY, Ahmed J, Hiremath N, Auras R, Joseph A (2017) Food Hydrocoll 62:191

    Article  CAS  Google Scholar 

  28. Lifshin E (1992) Scanning electron microscopy and x–ray microanalysis, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  29. Rivero S, García MA, Pinotti A (2010) Innov Food Sci Emerg Technol 11:369

    Article  CAS  Google Scholar 

  30. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experiments: design, innovation, and discovery, 2nd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  31. Yan M, Li B, Zhao X, Yi J (2011) Food Hydrocoll 25:907

    Article  CAS  Google Scholar 

  32. Zhao Y, Sun Z (2018) Int J Food Prop 20:S2822

    Article  Google Scholar 

  33. Moura CM, Moura JM, Soares NM, Pinto (2011) Chem Eng Process 50:351

    Article  Google Scholar 

  34. Wang L, Auty MAE, Rau A, Kerry JF, Kerry JP (2009) J Food Eng 90:11

    Article  CAS  Google Scholar 

  35. Chiou BS, Avena-Bustillos RJ, Bechtel PJ, Jafri H, Narayan R, Imam SH, Glenn GM, Orts WJ (2008) Eur Polym J 44:3748

    Article  CAS  Google Scholar 

  36. Hosseini SF, Javidi Z, Rezaei M (2016) Int J Biol Macromol 92:1205

    Article  CAS  Google Scholar 

  37. Kwak HW, Lee H, Park S, Lee ME, Jin HJ (2019) Int J Biol Macromol 146:332

    Article  Google Scholar 

  38. Jridi M, Hajji S, Ayed HB, Lassoued I, Mbarek A, Kammoun M, Souissi N, Nasri M (2014) Int J Biol Macromol 67:373

    Article  CAS  Google Scholar 

  39. Hosseini SF, Rezaei M, Zandi M, Ghavi FF (2013) Food Chem 136:1490

    Article  Google Scholar 

  40. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2016) Food Bioproc Technol 9:101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the National Council for Science and Technological Development (CNPq) - Brazil and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Brazil, Finance Code 001. The authors would also like to thank the Integrated Analysis Center (CIA) and the Center for Electronic Microscopy of the South Zone (CEMESUL) of FURG/Brazil, for carrying out the FT-IR, SEM, DSC and TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz A. A. Pinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, B.M., Farias, B.S., Casati, M.O. et al. Gelatin Films from Carp Skin Crosslinked by Gallic Acid and Incorporated with Chitosan/Tuna Lipid Fractions. J Polym Environ 29, 2096–2110 (2021). https://doi.org/10.1007/s10924-020-01995-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01995-2

Keywords

Navigation