Skip to main content

Advertisement

Log in

A Sustainable Approach for the Synthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposite by Employing Corncob-Derived Nanocellulose as a Reinforcing Agent

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a copolymer synthesized by Bacillus megaterium co-utilizing cheese whey and food waste hydrolysate for its one-step production. The optimized substrate ratio of 60:40 (v/v) manifested maximum biomass of 3.09 ± 0.12 g/L and PHBV yield of 2.0 ± 0.3 g/L. Batch kinetics study revealed maximum biomass and PHBV yield of 3.05 ± 0.07 g/L and 2.175 ± 0.06 g/L respectively, with 71.43 ± 0.28% g/g PHBV content. The integration of corncob-derived nanocellulose into PHBV was confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyzed the thermal characteristics of the PHBV biocomposite, where the highest degradation temperature was obtained at 790 °C, thus exhibiting high thermal stability. The mechanical properties such as Young's modulus, elongation at break, and tensile strength of the biocomposite was comparatively higher than PHBV and was found to be 40 MPa, 5.310%, and 11.110 MPa, respectively. The enhanced thermal and mechanical characteristics of PHBV biocomposite proves that the corncob-derived nanocellulose can be employed as a reinforcing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. David G, Michel J, Gastaldi E, Gontard N, Angellier-Coussy H (2020) How vine shoots as fillers impact the biodegradation of PHBV-based composites. Int J Mol Sci 21(1):228. https://doi.org/10.3390/ijms21010228

    Article  CAS  Google Scholar 

  2. Israni N, Shivakumar S (2019) Polyhydroxyalkanoates in packaging. In: Biotechnological applications of polyhydroxyalkanoates. Singapore, pp 363–388. https://doi.org/10.1007/978-981-13-3759-8_14

  3. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808. https://doi.org/10.3144/expresspolymlett.2014.82

    Article  CAS  Google Scholar 

  4. Lammi S, Gastaldi E, Gaubiac F, Angellier-Coussy H (2019) How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based composites. Polym Degrad Stabil 166:325–333. https://doi.org/10.1016/j.polymdegradstab.2019.06.010

    Article  CAS  Google Scholar 

  5. Yang H, Li J, Du G, Liu L (2017) Microbial production and molecular engineering of industrial enzymes: challenges and strategies. In: Biotechnology of microbial enzymes. Academic Press, pp. 151–165. https://doi.org/10.1016/B978-0-12-803725-6.00006-6

  6. Phasakanon J, Chookietwattana K, Dararat S (2014) Polyhydroxyalkanoate production from sequencing batch reactor system treating domestic wastewater mixed with glycerol waste. APCBEE Proc 8:161–166. https://doi.org/10.1016/j.apcbee.2014.03.020

    Article  CAS  Google Scholar 

  7. Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Progr 26(2):424–430. https://doi.org/10.1002/btpr.355

    Article  CAS  Google Scholar 

  8. Koller M, Salerno A, Muhr A, Reiterer A, Chiellini E, Casella S, Horvat P, Braunegg G (2012) Whey lactose as a raw material for microbial production of biodegradable polyesters. In: Polyester. InTech, London, pp 51–92. https://doi.org/10.5772/48737

  9. Kumar G, Ponnusamy VK, Bhosale RR, Shobana S, Yoon JJ, Bhatia SK, Banu JR, Kim SH (2019) A review on the conversion of volatile fatty acids to polyhydroxyalkonates using dark fermentative effluents from hydrogen production. Bioresource Technol. https://doi.org/10.1016/j.biortech.2019.121427

    Article  Google Scholar 

  10. Suhazsini P, Keshav R, Narayanan S, Chaudhuri A, Radha P (2020) A study on the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Bacillus megaterium utilizing cheese whey permeate. J Polym Environ 2:1–6. https://doi.org/10.1007/s10924-020-01687-x

    Article  CAS  Google Scholar 

  11. Wang P, Chen XT, Qiu YQ, Liang XF, Cheng MM, Wang YJ, Ren LH (2019) Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol Appl Bioc. https://doi.org/10.1002/bab.1848

    Article  Google Scholar 

  12. Shen L, Hu H, Ji H, Cai J, He N, Li Q, Wang Y (2014) Production of poly (hydroxybutyrate–hydroxyvalerate) from waste organics by the two-stage process: focus on the intermediate volatile fatty acids. Bioresource Technol 166:194–200. https://doi.org/10.1016/j.biortech.2014.05.038

    Article  CAS  Google Scholar 

  13. Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY, Song HS, Jeon JM, Kim JS, Lee YK, Yang YH (2019) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int J Biol Macromol 133:1. https://doi.org/10.1016/j.ijbiomac.2019.04.083

    Article  CAS  PubMed  Google Scholar 

  14. Bhubalan K, Rathi DN, Abe H, Iwata T, Sudesh K (2010) Improved synthesis of P (3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym Degrad Stabil 95(8):1436–1442. https://doi.org/10.1016/j.polymdegradstab.2009.12.018

    Article  CAS  Google Scholar 

  15. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotech 39:76–88. https://doi.org/10.1016/j.copbio.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  16. Ravindran L, Sreekala MS, Thomas S (2019) Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): structure-property relationships. Int J Biol Macromol 131:858–870. https://doi.org/10.1016/j.ijbiomac.2019.03.134

    Article  CAS  PubMed  Google Scholar 

  17. Dasan YK, Bhat AH, Ahmad F (2017) Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material. Carbohyd Polym 157:1323–1332. https://doi.org/10.1016/j.carbpol.2016.11.012

    Article  CAS  Google Scholar 

  18. Sarasini F, Luzi F, Dominici F, Maffei G, Iannone A, Zuorro A, Lavecchia R, Torre L, Carbonell-Verdu A, Balart R, Puglia D (2018) Effect of different compatibilizers on sustainable composites based on a PHBV/PBAT matrix filled with coffee silverskin. Polymers 10(11):1256. https://doi.org/10.3390/polym10111256

    Article  CAS  PubMed Central  Google Scholar 

  19. Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind Crop Prod 111:878–888. https://doi.org/10.1016/j.indcrop.2017.10.062

    Article  CAS  Google Scholar 

  20. Guna V, Ilangovan M, Hu C, Venkatesh K, Reddy N (2019) Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Ind Crop Prod 131:25–31. https://doi.org/10.1016/j.indcrop.2019.01.011

    Article  CAS  Google Scholar 

  21. Muthuraj R, Lacoste C, Lacroix P, Bergeret A (2019) Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Ind Crop Prod 135:238–245. https://doi.org/10.1016/j.indcrop.2019.04.053

    Article  CAS  Google Scholar 

  22. Guna V, Ilangovan M, Rather MH, Giridharan BV, Prajwal B, Krishna KV, Venkatesh K, Reddy N (2020) Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. J Build Eng 27:100991. https://doi.org/10.1016/j.jobe.2019.100991

    Article  Google Scholar 

  23. Ferri M, Vannini M, Ehrnell M, Eliasson L, Xanthakis E, Monari S, Sisti L, Marchese P, Celli A, Tassoni A (2020) From winery waste to bioactive compounds and new polymeric biocomposites: a contribution to the circular economy concept. J Adv Res. https://doi.org/10.1016/j.jare.2020.02.015

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li M, Cheng YL, Fu N, Li D, Adhikari B, Chen XD (2014) Isolation and characterization of corncob cellulose fibers using microwave-assisted chemical treatments. Int J Food Eng 10(3):427–436. https://doi.org/10.1515/ijfe-2014-0052

    Article  CAS  Google Scholar 

  25. Panchal P, Ogunsona E, Mekonnen T (2019) Trends in advanced functional material applications of nanocellulose. Processes 7(1):10. https://doi.org/10.3390/pr7010010

    Article  CAS  Google Scholar 

  26. Xue Y, Mou Z, Xiao H (2017) Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 9(39):14758–14781. https://doi.org/10.1039/C7NR04994C

    Article  CAS  PubMed  Google Scholar 

  27. Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crop Prod 87:287–296. https://doi.org/10.1016/j.indcrop.2016.04.060

    Article  CAS  Google Scholar 

  28. Novo LP, Bras J, García A, Belgacem N, Curvelo AA (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846. https://doi.org/10.1021/acssuschemeng.5b00762

    Article  CAS  Google Scholar 

  29. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Int 19(5):383–396. https://doi.org/10.1016/j.cocis.2014.10.003

    Article  CAS  Google Scholar 

  30. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. https://doi.org/10.1021/cr900339w

    Article  CAS  PubMed  Google Scholar 

  31. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  32. Jeevan P, Nelson R, Rena AE (2011) Optimization studies on acid hydrolysis of corn cob hemicellulosic hydrolysate for microbial production of xylitol. J Microbiol Biotechn Res 1(4):114–123

    CAS  Google Scholar 

  33. Wulandari WT, Rochliadi A, Arcana IM (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. In: IOP conference series: materials science and engineering 2016, vol 107(1), p 012045. IOP Publishing. https://doi.org/10.1088/1757-899X/107/1/012045

  34. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82(2):337–345. https://doi.org/10.1016/j.carbpol.2010.04.063

    Article  CAS  Google Scholar 

  35. Mazur K, Kuciel S (2019) Mechanical and hydrothermal aging behaviour of polyhydroxybutyrate-co-valerate (PHBV) composites reinforced by natural fibres. Molecules 24(19):3538. https://doi.org/10.3390/molecules24193538

    Article  CAS  PubMed Central  Google Scholar 

  36. Martínez-Sanz M, Villano M, Oliveira C, Albuquerque MG, Majone M, Reis M, Lopez-Rubio A, Lagaron JM (2014) Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers. New Biotechnol 31(4):364–376. https://doi.org/10.1016/j.nbt.2013.06.003

    Article  CAS  Google Scholar 

  37. Seoane IT, Fortunati E, Puglia D, Cyras VP, Manfredi LB (2016) Development and characterization of bionanocomposites based on poly (3-hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polym Int 65(9):1046–1053. https://doi.org/10.1002/pi.5150

    Article  CAS  Google Scholar 

  38. Motaung TE, Linganiso LZ (2018) Critical review on agrowaste cellulose applications for biopolymers. Int J Plast Technol 22(2):185–216. https://doi.org/10.1007/s12588-018-9219-6

    Article  CAS  Google Scholar 

  39. Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2(1):34

    Article  Google Scholar 

  40. Wang K, Yin J, Shen D, Li N (2014) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresource Technol 161:395–401. https://doi.org/10.1016/j.biortech.2014.03.088

    Article  CAS  Google Scholar 

  41. Purser BJ, Thai SM, Fritz T, Esteves SR, Dinsdale RM, Guwy AJ (2014) An improved titration model reducing over estimation of total volatile fatty acids in anaerobic digestion of energy crop, animal slurry and food waste. Water Res 61:162–170. https://doi.org/10.1016/j.watres.2014.05.020

    Article  CAS  PubMed  Google Scholar 

  42. Esteban-Gutiérrez M, Garcia-Aguirre J, Irizar I, Aymerich E (2018) From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling. Waste Manag 77:203–212. https://doi.org/10.1016/j.wasman.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  43. American Public Health Association (1998) Water Environment Federation, Standard methods for the examination of water and wastewater. Stand Methods 541

  44. Jayakumar A, Prabhu K, Shah L, Radha P (2020) Biologically and environmentally benign approach for PHB-silver nanocomposite synthesis and its characterization. Polym Test 81:106197. https://doi.org/10.1016/j.polymertesting.2019.106197

    Article  CAS  Google Scholar 

  45. Das S, Majumder A, Shukla V, Suhazsini P, Radha P (2018) Biosynthesis of poly (3-hydroxybutyrate) from cheese whey by Bacillus megaterium NCIM 5472. J Polym Environ 26(11):4176–4187. https://doi.org/10.1007/s10924-018-1288-2

    Article  CAS  Google Scholar 

  46. Li A, Ha Y, Wang F, Li W, Li Q (2012) Determination of thermally induced trans-fatty acids in soybean oil by attenuated total reflectance fourier transform infrared spectroscopy and gas chromatography analysis. J Agric Food Chem 60(42):10709–10713. https://doi.org/10.1021/jf3033599

    Article  CAS  PubMed  Google Scholar 

  47. Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crop Prod 83:746–754. https://doi.org/10.1016/j.indcrop.2015.11.083

    Article  CAS  Google Scholar 

  48. Mahardika M, Abral H, Kasim A, Arief S, Asrofi M (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2):28. https://doi.org/10.3390/fib6020028

    Article  CAS  Google Scholar 

  49. Ashori A, Jonoobi M, Ayrilmis N, Shahreki A, Fashapoyeh MA (2019) Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. Int J Biol Macromol 136:1119–1124. https://doi.org/10.1016/j.ijbiomac.2019.06.181

    Article  CAS  PubMed  Google Scholar 

  50. Mohapatra S, Samantaray DP, Samantaray SM, Mishra BB, Das S, Majumdar S, Pradhan SK, Rath SN, Rath CC, Akthar J, Achary KG (2016) Structural and thermal characterization of PHAs produced by Lysinibacillus sp through submerged fermentation process. Int J Biol Macromol 93:1161–1167. https://doi.org/10.1016/j.ijbiomac.2016.09.077

    Article  CAS  PubMed  Google Scholar 

  51. Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohyd Polym 151:716–724. https://doi.org/10.1016/j.carbpol.2016.06.025

    Article  CAS  Google Scholar 

  52. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  53. Boufi S, Chaker A (2016) Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Ind Crop Prod 93:39–47. https://doi.org/10.1016/j.indcrop.2016.05.030

    Article  CAS  Google Scholar 

  54. Manikandan NA, Pakshirajan K, Pugazhenthi G (2020) Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.03.084

    Article  PubMed  Google Scholar 

  55. Fukushima K, Tabuani D, Abbate C, Arena M, Ferreri L (2010) Effect of sepiolite on the biodegradation of poly (lactic acid) and polycaprolactone. Polym Degrad Stabil 95(10):2049–2056. https://doi.org/10.1016/j.polymdegradstab.2010.07.004

    Article  CAS  Google Scholar 

  56. Nagamani P, Chaitanya K, Mahmood SK (2015) Production and characterization of polymer from Bacillus OU73T from in-expensive carbon sources. Int J Curr Microbiol Appl Sci 4(7):833–840

    CAS  Google Scholar 

  57. Moorkoth D, Nampoothiri KM (2016) Production and characterization of poly (3-hydroxy butyrate-co-3 hydroxyvalerate)(PHBV) by a novel halotolerant mangrove isolate. Bioresource Technol 201:253–260. https://doi.org/10.1016/j.biortech.2015.11.046

    Article  CAS  Google Scholar 

  58. Israni N, Venkatachalam P, Gajaraj B, Varalakshmi KN, Shivakumar S (2020) Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: production, characterization and in vitro biocompatibility evaluation. J Environ Manag 255:109884. https://doi.org/10.1016/j.jenvman.2019.109884

    Article  CAS  Google Scholar 

  59. Silvério HA, Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436. https://doi.org/10.1016/j.indcrop.2012.10.014

    Article  CAS  Google Scholar 

  60. do Lago RC, de Oliveira AL, Dias MC, de Carvalho EE, Tonoli GH, Boas EV (2020) Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: mechanical and barrier properties. Ind Crop Prod 148:112264. https://doi.org/10.1016/j.indcrop.2020.112264

    Article  CAS  Google Scholar 

  61. Cherpinski A, Torres-Giner S, Vartiainen J, Peresin MS, Lahtinen P, Lagaron JM (2018) Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 25(2):1291–1307. https://doi.org/10.1007/s10570-018-1648-z

    Article  CAS  Google Scholar 

  62. Jun D, Guomin Z, Mingzhu P, Leilei Z, Dagang L, Rui Z (2017) Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: effect of CNCs and CNFs. Carbohyd Polym 168:255–262. https://doi.org/10.1016/j.carbpol.2017.03.076

    Article  CAS  Google Scholar 

  63. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films. Express Polym Lett. https://doi.org/10.3144/expresspolymlett.2012.85

    Article  Google Scholar 

  64. Ahankari SS, Mohanty AK, Misra M (2011) Mechanical behaviour of agro-residue reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate),(PHBV) green composites: a comparison with traditional polypropylene composites. Compos Sci Technol 71(5):653–657. https://doi.org/10.1016/j.compscitech.2011.01.007

    Article  CAS  Google Scholar 

  65. Zhao X, Ji K, Kurt K, Cornish K, Vodovotz Y (2019) Optimal mechanical properties of biodegradable natural rubber-toughened PHBV bioplastics intended for food packaging applications. Food Pack Shelf 21:100348. https://doi.org/10.1016/j.fpsl.2019.100348

    Article  Google Scholar 

  66. Hassaini L, Kaci M, Touati N, Pillin I, Kervoelen A, Bruzaud S (2017) Valorization of olive husk flour as a filler for biocomposites based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of silane treatment. Polym Test 59:430–440. https://doi.org/10.1016/j.polymertesting.2017.03.004

    Article  CAS  Google Scholar 

  67. Wei L, McDonald AG, Stark NM (2015) Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromol 16(3):1040–1049. https://doi.org/10.1021/acs.biomac.5b00049

    Article  CAS  Google Scholar 

  68. Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090. https://doi.org/10.1007/s10570-015-0554-x

    Article  CAS  Google Scholar 

  69. Benini KC, Ornaghi Júnior HL, Bianchi O, de Magalhães WF, Henriques FF, Windmoller D, Voorwald HJ, Cioffi MO (2019) Novel biodegradable composites based on PHBV: Effect of nanocellulose incorporation on the non-isothermal crystallization kinetic and structural parameters. Polym Compos 40(8):3156–3165. https://doi.org/10.1002/pc.25164

    Article  CAS  Google Scholar 

  70. Wei L, Stark NM, McDonald AG (2015) Interfacial improvements in biocomposites based on poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chem 17(10):4800–4814. https://doi.org/10.1039/C5GC01568E

    Article  CAS  Google Scholar 

  71. Panaitescu DM, Nicolae CA, Gabor AR, Trusca R (2020) Thermal and mechanical properties of poly (3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Ind Crop Prod 145:112071. https://doi.org/10.1016/j.indcrop.2019.112071

    Article  CAS  Google Scholar 

  72. Yu HY, Qin ZY, Liu YN, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohyd Polym 89(3):971–978. https://doi.org/10.1016/j.carbpol.2012.04.053

    Article  CAS  Google Scholar 

  73. Makaremi M, Pasbakhsh P, Cavallaro G, Lazzara G, Aw YK, Lee SM, Milioto S (2017) Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl Mater Interface 9(20):17476–17488. https://doi.org/10.1021/acsami.7b04297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the Department of Biotechnology, SRM Institute of Science and Technology for providing research and analytical facilities. We acknowledge the HRTEM and XRD facility at SRMIST set up with support from MNRE (Project No.31/03/2014-15/PVSE-R&D), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Radha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, S., Anjum, S., Chaudhuri, A. et al. A Sustainable Approach for the Synthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposite by Employing Corncob-Derived Nanocellulose as a Reinforcing Agent. J Polym Environ 29, 2080–2095 (2021). https://doi.org/10.1007/s10924-020-01994-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01994-3

Keywords