Skip to main content
Log in

Removal of Methylene Blue from Water by Peach Gum Based Composite Aerogels

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, novel composite aerogels of peach gum/activated carbon (PGAC) and peach gum/graphene oxide (PGGO) were synthesized by freeze-drying method for removing methylene blue (MB) from water. The methods of the scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Brunauer–Emmett–Teller (BET) are used to characterize the adsorbents. It is important to study the effect of distinct factors on MB adsorption. Studies show that using the Langmuir model and Freundlich model can describe the equilibrium isotherms. The maximum adsorption capacities of PGAC and PGGO calculated by Langmuir model were 279.98 mg/g and 360.99 mg/g. Kinetic studies reveals that the kinetic behavior of PGAC and PGGO is more in line with the pseudo-second-order kinetic. The adsorption reaction of MB onto PGAC was endothermic, meanwhile PGGO was exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu Y, Zhang L, Gao C, Ma J, Ma X, Han R (2009) Adsorption of copper ions and methylene blue in a single and binary system on wheat straw. J Chem Eng Data 54(12):3229–3234. https://doi.org/10.1021/je900220q

    Article  CAS  Google Scholar 

  2. Khanday WA, Marrakchi F, Asif M, Hameed BH (2017) Mesoporous zeolite–activated carbon composite from oil palm ash as an effective adsorbent for methylene blue. J Taiwan Inst Chem Eng 70:32–41. https://doi.org/10.1016/j.jtice.2016.10.029

    Article  CAS  Google Scholar 

  3. Almeida CA, Debacher NA, Downs AJ, Cottet L, Mello CA (2009) Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci 332(1):46–53. https://doi.org/10.1016/j.jcis.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  4. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39(1):75–90. https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  5. Valdés H, Tardón RF, Zaror CA (2012) Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters. Chem Eng J 211–212:388–395. https://doi.org/10.1016/j.cej.2012.09.069

    Article  CAS  Google Scholar 

  6. Chen L, Moon J-H, Ma X, Zhang L, Chen Q, Chen L, Peng R, Si P, Feng J, Li Y, Lou J, Ci L (2018) High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. Carbon 130:487–494. https://doi.org/10.1016/j.carbon.2018.01.062

    Article  CAS  Google Scholar 

  7. Ma Y, Qi P, Ju J, Wang Q, Hao L, Wang R, Sui K, Tan Y (2019) Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos B 162:671–677. https://doi.org/10.1016/j.compositesb.2019.01.048

    Article  CAS  Google Scholar 

  8. Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M (2009) Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem Eng J 145(3):496–504. https://doi.org/10.1016/j.cej.2008.05.003

    Article  CAS  Google Scholar 

  9. Hameed BH (2009) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater 161(2–3):753–759. https://doi.org/10.1016/j.jhazmat.2008.04.019

    Article  CAS  PubMed  Google Scholar 

  10. Al-Ghouti MA, Khraisheh MA, Ahmad MN, Allen S (2009) Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study. J Hazard Mater 165(1–3):589–598. https://doi.org/10.1016/j.jhazmat.2008.10.018

    Article  CAS  PubMed  Google Scholar 

  11. Doğan M, Alkan M, Onganer Y (2000) Adsorption of methylene blue from aqueous solution onto perlite. Water Air Soil Pollut 120(3):229–248. https://doi.org/10.1023/A:1005297724304

    Article  Google Scholar 

  12. Hong S, Wen C, He J, Gan F, Ho YS (2009) Adsorption thermodynamics of methylene blue onto bentonite. J Hazard Mater 167(1–3):630–633. https://doi.org/10.1016/j.jhazmat.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  13. Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Biores Technol 101(9):3040–3046. https://doi.org/10.1016/j.biortech.2009.12.042

    Article  CAS  Google Scholar 

  14. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546. https://doi.org/10.1016/j.jcis.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Yang ST, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359(1):24–29. https://doi.org/10.1016/j.jcis.2011.02.064

    Article  CAS  PubMed  Google Scholar 

  16. Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt JJ, Gaspard S (2009) Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J Hazard Mater 165(1–3):1029–1039. https://doi.org/10.1016/j.jhazmat.2008.10.133

    Article  CAS  PubMed  Google Scholar 

  17. Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation–application in methylene blue adsorption from aqueous solution. J Hazard Mater 166(2–3):1514–1521. https://doi.org/10.1016/j.jhazmat.2008.12.080

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Qiu K (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem Eng J 165(1):209–217. https://doi.org/10.1016/j.cej.2010.09.019

    Article  CAS  Google Scholar 

  19. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. https://doi.org/10.1039/B917103G

    Article  CAS  PubMed  Google Scholar 

  20. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224. https://doi.org/10.1038/nnano.2009.58

    Article  CAS  PubMed  Google Scholar 

  21. Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem Eng J 255:604–612. https://doi.org/10.1016/j.cej.2014.06.063

    Article  CAS  Google Scholar 

  22. Wang N, Zhao Q, Xu H, Niu W, Ma L, Lan D, Hao L (2018) Adsorptive treatment of coking wastewater using raw coal fly ash: adsorption kinetic, thermodynamics and regeneration by Fenton process. Chemosphere 210:624–632. https://doi.org/10.1016/j.chemosphere.2018.07.073

    Article  CAS  PubMed  Google Scholar 

  23. He Q, Liu J, Liu X, Li G, Chen D, Deng P, Liang J (2019) A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites. Electrochim Acta 296:683–692. https://doi.org/10.1016/j.electacta.2018.11.096

    Article  CAS  Google Scholar 

  24. Konicki W, Aleksandrzak M, Moszynski D, Mijowska E (2017) Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. J Colloid Interface Sci 496:188–200. https://doi.org/10.1016/j.jcis.2017.02.031

    Article  CAS  PubMed  Google Scholar 

  25. Ramezanzadeh B, Mohamadzadeh Moghadam MH, Shohani N, Mahdavian M (2017) Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chem Eng J 320:363–375. https://doi.org/10.1016/j.cej.2017.03.061

    Article  CAS  Google Scholar 

  26. Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J (2018) Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem Eng J 334:1781–1791. https://doi.org/10.1016/j.cej.2017.11.117

    Article  CAS  Google Scholar 

  27. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  CAS  Google Scholar 

  28. Kalderis D, Kayan B, Akay S, Kulaksız E, Gözmen B (2017) Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: Process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste. J Environ Chem Eng 5(3):2222–2231. https://doi.org/10.1016/j.jece.2017.04.039

    Article  CAS  Google Scholar 

  29. Qi Y, Yang M, Xu W, He S, Men Y (2017) Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J Colloid Interface Sci 486:84–96. https://doi.org/10.1016/j.jcis.2016.09.058

    Article  CAS  PubMed  Google Scholar 

  30. Wang F (2017) Novel high performance magnetic activated carbon for phenol removal: equilibrium, kinetics and thermodynamics. J Porous Mater 24(5):1309–1317. https://doi.org/10.1007/s10934-017-0372-7

    Article  CAS  Google Scholar 

  31. Yahya H, Alireza A, Elham A, Ali A (2012) Removal of acid orange 7 and remazol black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater Sci Eng, C 32(6):1394–1400

    Article  Google Scholar 

  32. Yang X, Li Y, Du Q, Sun J, Chen L, Hu S, Wang Z, Xia Y, Xia L (2015) Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J Colloid Interface Sci 453:107–114. https://doi.org/10.1016/j.jcis.2015.04.042

    Article  CAS  PubMed  Google Scholar 

  33. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86(4):1425–1438. https://doi.org/10.1016/j.carbpol.2011.06.066

    Article  CAS  Google Scholar 

  34. Wang Z, Wei R, Gu J, Liu H, Liu C, Luo C, Kong J, Shao Q, Wang N, Guo Z, Liu X (2018) Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139:1126–1135. https://doi.org/10.1016/j.carbon.2018.08.014

    Article  CAS  Google Scholar 

  35. Huangfu Y, Liang C, Han Y, Qiu H, Song P, Wang L, Kong J, Gu J (2019) Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos Sci Technol 169:70–75. https://doi.org/10.1016/j.compscitech.2018.11.012

    Article  CAS  Google Scholar 

  36. Yue Y, Liu N, Ma Y, Wang S, Liu W, Luo C, Zhang H, Cheng F, Rao J, Hu X, Su J, Gao Y (2018) Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12(5):4224–4232. https://doi.org/10.1021/acsnano.7b07528

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Lyu S, Zhou X, Gu H, Ma C, Wang C, Ding T, Shao Q, Liu H, Guo Z (2019) Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J Colloid Interface Sci 536:245–251. https://doi.org/10.1016/j.jcis.2018.10.038

    Article  CAS  PubMed  Google Scholar 

  38. Huang Z, Li Z, Zheng L, Zhou L, Chai Z, Wang X, Shi W (2017) Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem Eng J 328:1066–1074. https://doi.org/10.1016/j.cej.2017.07.067

    Article  CAS  Google Scholar 

  39. Kabiri S, Tran DNH, Altalhi T, Losic D (2014) Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon 80:523–533. https://doi.org/10.1016/j.carbon.2014.08.092

    Article  CAS  Google Scholar 

  40. Zhou K, Li Y, Li Q, Du Q, Wang D, Sui K, Wang C, Li H, Xia Y (2018) Kinetic, isotherm and thermodynamic studies for removal of methylene blue using β-cyclodextrin/activated carbon aerogels. J Polym Environ 26(8):3362–3370. https://doi.org/10.1007/s10924-018-1219-2

    Article  CAS  Google Scholar 

  41. Simas-Tosin FF, Wagner R, Santos EMR, Sassaki GL, Gorin PAJ, Iacomini M (2009) Polysaccharide of nectarine gum exudate: comparison with that of peach gum. Carbohydr Polym 76(3):485–487. https://doi.org/10.1016/j.carbpol.2008.11.013

    Article  CAS  Google Scholar 

  42. Zhou L, Huang J, He B, Zhang F, Li H (2014) Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Carbohydr Polym 101:574–581. https://doi.org/10.1016/j.carbpol.2013.09.093

    Article  CAS  PubMed  Google Scholar 

  43. Song Y, Tan J, Wang G, Zhou L (2018) Superior amine-rich gel adsorbent from peach gum polysaccharide for highly efficient removal of anionic dyes. Carbohydr Polym 199:178–185. https://doi.org/10.1016/j.carbpol.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  44. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  45. Wang Q, Zhang J, Wang A (2014) Freeze-drying: A versatile method to overcome re-aggregation and improve dispersion stability of palygorskite for sustained release of ofloxacin. Appl Clay Sci 87:7–13. https://doi.org/10.1016/j.clay.2013.11.017

    Article  CAS  Google Scholar 

  46. Ratti C (2001) Hot air and freeze-drying of high-value foods: a review. J Food Eng 49(4):311–319. https://doi.org/10.1016/S0260-8774(00)00228-4

    Article  Google Scholar 

  47. Yan M, Huang W, Li Z (2019) Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. Int J Biol Macromol 136:927–935. https://doi.org/10.1016/j.ijbiomac.2019.06.144

    Article  CAS  PubMed  Google Scholar 

  48. Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev 87:1–21. https://doi.org/10.1016/j.rser.2018.02.003

    Article  CAS  Google Scholar 

  49. Gupta VK, Pathania D, Sharma S, Agarwal S, Singh P (2013) Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. J Mol Liq 177:343–352. https://doi.org/10.1016/j.molliq.2012.10.017

    Article  CAS  Google Scholar 

  50. Subedi N, Lahde A, Abu-Danso E, Iqbal J, Bhatnagar A (2019) A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water. Int J Biol Macromol 137:948–959. https://doi.org/10.1016/j.ijbiomac.2019.06.151

    Article  CAS  PubMed  Google Scholar 

  51. Dai H, Huang Y, Huang H (2018) Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym 185:1–11. https://doi.org/10.1016/j.carbpol.2017.12.073

    Article  CAS  PubMed  Google Scholar 

  52. Fan L, Luo C, Li X, Lu F, Qiu H, Sun M (2012) Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater 215–216:272–279. https://doi.org/10.1016/j.jhazmat.2012.02.068

    Article  CAS  PubMed  Google Scholar 

  53. Tang K, Li Y, Zhang X, Li M, Du Q, Li H, Wang Y, Wang D, Wang C, Sui K, Li H, Xia Y (2019) Synthesis of citric acid modified β-cyclodextrin/activated carbon hybrid composite and their adsorption properties toward methylene blue. J Appl Polym Sci 48:315. https://doi.org/10.1002/app.48315

    Article  CAS  Google Scholar 

  54. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  55. Ho YS (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40(1):119–125. https://doi.org/10.1016/j.watres.2005.10.040

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Du Q, Liu T, Sun J, Jiao Y, Xia Y, Xia L, Wang Z, Zhang W, Wang K, Zhu H, Wu D (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47(8):1898–1904. https://doi.org/10.1016/j.materresbull.2012.04.021

    Article  CAS  Google Scholar 

  57. Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192(3):1515–1524. https://doi.org/10.1016/j.jhazmat.2011.06.068

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672140), Taishan Scholar Program of Shandong Province (201511029).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Yanhui Li.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, Y., Yang, K. et al. Removal of Methylene Blue from Water by Peach Gum Based Composite Aerogels. J Polym Environ 29, 1752–1762 (2021). https://doi.org/10.1007/s10924-020-01987-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01987-2

Keywords