Skip to main content
Log in

Simultaneous Determination and Optimization of Titan Yellow and Reactive Blue 4 Dyes Removal Using Chitosan@hydroxyapatite Nanocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan (CS) and hydroxyapatite (HA) nanocomposites have been prepared and used for the simultaneous removal of Titan Yellow (TY) and Reactive Blue 4 (RB 4) dyes from aqueous solutions in single and binary batch systems. Chitosan@hydroxyapatite nanocomposites (NCs) were characterized by diverse techniques such as EDX, FTIR, TGA, and FESEM. Derivative spectrophotometry (DS) was developed to the determination of TY and RB 4 in two-compound mixtures employing the ‘zero-crossing’ technique. The influence of operational variables (such as sorbent mass, contact time, pH, and initial concentration of dyes) on the dyes adsorption is evaluated. A response surface methodology based on a Hybrid central composite design is used to optimize the removal of dyes by CS@HA NCs through a batch adsorption process. In optimum conditions (pH = 4, sorbent dosage = 0.03 g TY (initial TY concentration) = 1100 mg L−1 and RB 4 (initial RB 4 concentration) = 950 mg L−1), the maximum uptake capacities of dyes were obtained 170.7 and 118.4 mg g−1 for TY and RB 4 dyes, respectively. The Langmuir isotherm model was convenient for elucidating the dye adsorption process in both single and binary solutions. The adsorption kinetics of both TY and RB 4 dyes were in best correlation with pseudo 2nd order model. The thermodynamic calculations elaborated that the adsorption of TY and RB 4 dyes was endothermic and spontaneous.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jin L, Sun Q, Xu Q, Xu Y (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour Technol 197:348–355

    Article  CAS  PubMed  Google Scholar 

  2. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    Article  CAS  PubMed  Google Scholar 

  3. Ghaemi M, Absalan G, Sheikhian L (2014) Adsorption characteristics of Titan yellow and Congo red on CoFe2O4 magnetic nanoparticles. J Iran Chem Soc 11:1759–1766

    Article  CAS  Google Scholar 

  4. Chaudhari AU, Paul D, Dhotre D, Kodam KM (2017) Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules. Water Res 122:603–613

    Article  CAS  PubMed  Google Scholar 

  5. Akrami A, Niazi A (2016) Synthesis of maghemite nanoparticles and its application for removal of Titan yellow from aqueous solutions using full factorial design. Desalin Water Treat 57:22618–22631

    Article  CAS  Google Scholar 

  6. Kyzas GZ, Matis KA (2015) Nanoadsorbents for pollutants removal: a review. J Mol Liq 203:159–168

    Article  CAS  Google Scholar 

  7. Carolin CF, Kumar PS, Saravanan A et al (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    Article  CAS  Google Scholar 

  8. Karimi MH, Mahdavinia GR, Massoumi B et al (2018) Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. Int J Biol Macromol 113:361–375

    Article  CAS  PubMed  Google Scholar 

  9. Fat’hi MR, Nasab SJH (2018) Synthesis of calcon-imprinted magnetic chitosan nanoparticles as a novel adsorbent and its application in selective removal of calcon dye from aqueous solutions. Int J Biol Macromol 114:1151–1160

    Article  PubMed  CAS  Google Scholar 

  10. Salah TA, Mohammad AM, Hassan MA, El-Anadouli BE (2014) Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. J Taiwan Inst Chem Eng 45:1571–1577

    Article  CAS  Google Scholar 

  11. Chiou M-S, Ho P-Y, Li H-Y (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dye Pigment 60:69–84

    Article  CAS  Google Scholar 

  12. Sutirman ZA, Sanagi MM, Karim KJA et al (2018) Equilibrium, kinetic and mechanism studies of Cu (II) and Cd (II) ions adsorption by modified chitosan beads. Int J Biol Macromol 116:255–263

    Article  CAS  PubMed  Google Scholar 

  13. Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45:518–526

    Article  CAS  Google Scholar 

  14. Jang SH, Jeong YG, Min BG et al (2008) Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. J Hazard Mater 159:294–299

    Article  CAS  PubMed  Google Scholar 

  15. Cui W, Hu Q, Wu J et al (2008) Preparation and characterization of magnetite/hydroxyapatite/chitosan nanocomposite by in situ compositing method. J Appl Polym Sci 109:2081–2088

    Article  CAS  Google Scholar 

  16. Zolgharnein J, Choghaei Z, Bagtash M et al (2016) Nano-Fe3O4 and corn cover composite for removal of Alizarin Red S from aqueous solution: characterization and optimization investigations. Desalin Water Treat 57:27672–27685

    CAS  Google Scholar 

  17. Zolgharnein J, Shahmoradi A, Sangi MR (2008) Optimization of Pb (II) biosorption by Robinia tree leaves using statistical design of experiments. Talanta 76:528–532

    Article  CAS  PubMed  Google Scholar 

  18. Mäkelä M (2017) Experimental design and response surface methodology in energy applications: a tutorial review. Energ Convers Manag 151:630–640

    Article  Google Scholar 

  19. Abbasi M, Habibi MM (2016) Optimization and characterization of Direct Blue 71 removal using nanocomposite of Chitosan-MWCNTs: central composite design modeling. J Taiwan Inst Chem Eng 62:112–121

    Article  CAS  Google Scholar 

  20. Janaki V, Vijayaraghavan K, Ramasamy AK et al (2012) Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite—a novel eco-friendly polymer. J Hazard Mater 241:110–117

    Article  PubMed  CAS  Google Scholar 

  21. Zolgharnein J, Rastgordani M (2018) Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method. J Mol Liq 262:405–414

    Article  CAS  Google Scholar 

  22. Gao J-F, Wang J-H, Yang C et al (2011) Binary biosorption of Acid Red 14 and Reactive Red 15 onto acid treated okara: simultaneous spectrophotometric determination of two dyes using partial least squares regression. Chem Eng J 171:967–975

    Article  CAS  Google Scholar 

  23. Bagtash M, Zolgharnein J (2018) Hybrid central composite design for simultaneous optimization of removal of methylene blue and alizarin red S from aqueous solutions using Vitis tree leaves. J Chemom 32:e2960

    Article  CAS  Google Scholar 

  24. Turabik M (2008) Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method. J Hazard Mater 158:52–64

    Article  CAS  PubMed  Google Scholar 

  25. Karpińska J (2004) Derivative spectrophotometry—recent applications and directions of developments. Talanta 64:801–822

    Article  PubMed  CAS  Google Scholar 

  26. Andronic L, Duta A (2012) Photodegradation processes in two-dyes systems—simultaneous analysis by first-order spectra derivative method. Chem Eng J 198:468–475

    Article  CAS  Google Scholar 

  27. Bezerra MA, Santelli RE, Oliveira EP et al (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  PubMed  Google Scholar 

  28. Zolgharnein J, Rastgordani M (2018) Multivariate optimization and characterization of simultaneous removal of binary mixture of Cu(II) and Pb(II) using Fe3O4@MoS2 nanoparticles. J Chemom 32:e3043

    Article  CAS  Google Scholar 

  29. Zolgharnein J, Dalvand K, Rastgordani M, Zolgharnein P (2017) Adsorptive removal of phosphate using nano cobalt hydroxide as a sorbent from aqueous solution; multivariate optimization and adsorption characterization. J Alloys Compd 725:1006–1017

    Article  CAS  Google Scholar 

  30. Zolgharnein J, Shahmoradi A (2010) Characterization of sorption isotherms, kinetic models, and multivariate approach for optimization of Hg (II) adsorption onto Fraxinus tree leaves. J Chem Eng Data 55:5040–5049

    Article  CAS  Google Scholar 

  31. Montgomery DC (2017) Design and analysis of experiments. John Wiley and Sons, New York

    Google Scholar 

  32. Roquemore KG (1976) Hybrid designs for quadratic response surfaces. Technometrics 18:419–423

    Article  Google Scholar 

  33. Zolgharnein J, Bagtash M (2015) Hybrid central composite design optimization for removal of methylene blue by Acer tree leaves: characterization of adsorption. Desalin Water Treat 54:2601–2610

    Article  CAS  Google Scholar 

  34. Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B 910:2–13

    Article  CAS  Google Scholar 

  35. Gao J-F, Zhang Q, Su K, Wang J-H (2010) Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules: Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies. Bioresour Technol 101:5793–5801

    Article  CAS  PubMed  Google Scholar 

  36. Zolgharnein J, Bagtash M, Shariatmanesh T (2015) Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina. Spectrochim Acta Part A Mol Biomol Spectrosc 137:1016–1028

    Article  CAS  Google Scholar 

  37. Bekçi Z, Özveri C, Seki Y, Yurdakoç K (2008) Sorption of malachite green on chitosan bead. J Hazard Mater 154:254–261

    Article  PubMed  CAS  Google Scholar 

  38. Adeogun AI, Ofudje EA, Idowu MA et al (2018) Biowaste-derived hydroxyapatite for effective removal of reactive yellow 4 dye: equilibrium, kinetic, and thermodynamic studies. ACS Omega 3:1991–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh KP, Gupta S, Singh AK, Sinha S (2011) Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J Hazard Mater 186:1462–1473

    Article  CAS  PubMed  Google Scholar 

  40. Samuel MS, Chidambaram R (2015) Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box–Behnken optimization, equilibrium, kinetics and thermodynamic studies. J Taiwan Inst Chem Eng 49:156–164

    Article  CAS  Google Scholar 

  41. Zolgharnein J, Asanjarani N, Shariatmanesh T (2013) Taguchi L 16 orthogonal array optimization for Cd (II) removal using Carpinus betulus tree leaves: adsorption characterization. Int Biodeterior Biodegrad 85:66–77

    Article  CAS  Google Scholar 

  42. Kannusamy P, Sivalingam T (2013) Synthesis of porous chitosan–polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Coll Surf B Biointerfaces 108:229–238

    Article  CAS  Google Scholar 

  43. Debnath S, Ballav N, Maity A, Pillay K (2017) Competitive adsorption of ternary dye mixture using pine cone powder modified with β-cyclodextrin. J Mol Liq 225:679–688

    Article  CAS  Google Scholar 

  44. Karthik R, Meenakshi S (2015) Removal of Cr (VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717

    Article  CAS  PubMed  Google Scholar 

  45. Zolgharnein J, Bagtash M, Asanjarani N (2014) Hybrid central composite design approach for simultaneous optimization of removal of alizarin red S and indigo carmine dyes using cetyltrimethylammonium bromide-modified TiO2 nanoparticles. J Environ Chem Eng 2:988–1000

    Article  CAS  Google Scholar 

  46. Zolgharnein J, Asanjrani N, Bagtash M, Azimi G (2014) Multi-response optimization using Taguchi design and principle component analysis for removing binary mixture of alizarin red and alizarin yellow from aqueous solution by nano γ-alumina. Spectrochim Acta Part A Mol Biomol Spectrosc 126:291–300

    Article  CAS  Google Scholar 

  47. Fard GC, Mirjalili M, Najafi F (2017) Hydroxylated α-Fe2O3 nanofiber: optimization of synthesis conditions, anionic dyes adsorption kinetic, isotherm and error analysis. J Taiwan Inst Chem Eng 70:188–199

    Article  CAS  Google Scholar 

  48. Bagtash M, Zolgharnein J (2018) Removal of brilliant green and malachite green from aqueous solution by a viable magnetic polymeric nanocomposite: simultaneous spectrophotometric determination of 2 dyes by PLS using original and first derivative spectra. J Chemom 32:e3014

    Article  CAS  Google Scholar 

  49. He Y, Zhang L, An X, Wan G et al (2019) Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: adsorption isotherms, kinetics, thermodynamics and mechanism. Sci Total Environ 688:184–198

    Article  CAS  PubMed  Google Scholar 

  50. Noroozi B, Sorial GA (2013) Applicable models for multi-component adsorption of dyes: a review. J Environ Sci 25:419–429

    Article  CAS  Google Scholar 

  51. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  52. Rangabhashiyam S, Anu N, Nandagopal MSG, Selvaraju N (2014) Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng 2:398–414

    Article  CAS  Google Scholar 

  53. Zolgharnein J, Bagtash M, Feshki S et al (2017) Crossed mixture process design optimization and adsorption characterization of multi-metal (Cu (II), Zn (II) and Ni (II)) removal by modified Buxus sempervirens tree leaves. J Taiwan Inst Chem Eng 78:104–117

    Article  CAS  Google Scholar 

  54. Saberi A, Sadeghi M, Alipour E (2020) Design of AgNPs-Base starch/PEG-poly (acrylic acid) hydrogel for removal of mercury (II). J Polym Environ 28:906–917

    Article  CAS  Google Scholar 

  55. Senthil Kumar P, Ramalingam S, Senthamarai C et al (2010) Adsorption of dye from aqueous solution by cashew nut shell: studies of equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261:52–60

    Article  CAS  Google Scholar 

  56. Errais E, Duplay J, Darragi F et al (2011) Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters. Desalination 275:74–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Zolgharnein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastgordani, M., Zolgharnein, J. Simultaneous Determination and Optimization of Titan Yellow and Reactive Blue 4 Dyes Removal Using Chitosan@hydroxyapatite Nanocomposites. J Polym Environ 29, 1789–1807 (2021). https://doi.org/10.1007/s10924-020-01982-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01982-7

Keywords

Navigation