Skip to main content

Sunflower Oil Industry By-product as Natural Filler of Biocomposite Foams for Packaging Applications

Abstract

The use of agroindustry by-products as reinforcements and/or composites filler is an innovative and economically attractive option that is still under study. Hence, the present work aims to study composite foams based on cassava-starch and sunflower oil press cake (SOPC), an oil industry by-product, using urea as an additive to enhance the biocomposites foaming capacity. Filler content (0, 20, and 40 wt%) and urea addition effect on foam morphology, physical properties and mechanical behaviour were analysed and compared to a benchmark polystyrene (PS) foam. In comparison with conventional PS foams, biofoams containing urea presented comparable mechanical properties yet higher hydrophilicity. Besides, formulations containing SOPC resulted in denser and harder materials and higher water uptake capacity than starch-based foams. Results provide further insights into biobased biodegradable foams development using agroindustrial residues as raw material and urea as foaming agent, with promising characteristics for food packaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:2–5. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  Google Scholar 

  2. Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review : starch-based composite foams. Compos Part A Appl Sci Manuf 78:246–263. https://doi.org/10.1016/j.compositesa.2015.08.014

    Article  CAS  Google Scholar 

  3. Gadhave RV, Das A, Mahanwar PA, Gadekar PT (2018) Starch based bio-plastics: the future of sustainable packaging. Open J Polym Chem 08:21–33. https://doi.org/10.4236/ojpchem.2018.82003

    Article  CAS  Google Scholar 

  4. Razza F, Degli Innocenti F, Dobon A et al (2015) Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. J Clean Prod 102:493–500. https://doi.org/10.1016/J.JCLEPRO.2015.04.033

    Article  CAS  Google Scholar 

  5. Kuang T, Ju J, Yang Z et al (2018) A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos Sci Technol 159:171–179. https://doi.org/10.1016/j.compscitech.2018.02.021

    Article  CAS  Google Scholar 

  6. Peinado V, García L, Fernández Á, Castell P (2014) Novel lightweight foamed poly(lactic acid) reinforced with different loadings of functionalised Sepiolite. Compos Sci Technol 101:17–23. https://doi.org/10.1016/j.compscitech.2014.06.025

    Article  CAS  Google Scholar 

  7. Ameli A, Jahani D, Nofar M et al (2014) Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties. Compos Sci Technol 90:88–95. https://doi.org/10.1016/j.compscitech.2013.10.019

    Article  CAS  Google Scholar 

  8. Cruz-Tirado JP, Vejarano R, Tapia-Blácido DR et al (2019) Biodegradable foam tray based on starches isolated from different Peruvian species. Int J Biol Macromol 125:800–807. https://doi.org/10.1016/j.ijbiomac.2018.12.111

    Article  CAS  Google Scholar 

  9. Richards E, Rizvi R, Chow A, Naguib H (2008) Biodegradable composite foams of PLA and PHBV using subcritical CO 2. J Polym Environ 16:258–266. https://doi.org/10.1007/s10924-008-0110-y

    Article  CAS  Google Scholar 

  10. Schmidt VCR, Laurindo JB (2010) Characterization of foams obtained from cassava starch, cellulose fibres and dolomitic limestone by a thermopressing process. Braz Arch Biol Technol 53:185–192. https://doi.org/10.1590/S1516-89132010000100023

    Article  CAS  Google Scholar 

  11. Mello LRPF, Mali S (2014) Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Ind Crops Prod 55:187–193. https://doi.org/10.1016/J.INDCROP.2014.02.015

    Article  CAS  Google Scholar 

  12. Carr LG, Parra DF, Ponce P et al (2006) Influence of fibers on the mechanical properties of cassava starch foams. J Polym Environ 14:179–183. https://doi.org/10.1007/s10924-006-0008-5

    Article  CAS  Google Scholar 

  13. Shekar HSS, Ramachandra M (2018) Green composites: a review. Mater Today Proc 5:2518–2526. https://doi.org/10.1016/j.matpr.2017.11.034

    Article  CAS  Google Scholar 

  14. Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym 193:19–27. https://doi.org/10.1016/j.carbpol.2018.03.088

    Article  CAS  Google Scholar 

  15. Martins Machado C, Benelli P, Tessaro IC (2017) Sesame cake incorporation on cassava starch foams for packaging use. Ind Crops Prod 102:115–121. https://doi.org/10.1016/J.INDCROP.2017.03.007

    Article  Google Scholar 

  16. Machado CM, Benelli P, Tessaro IC (2020) Study of interactions between cassava starch and peanut skin on biodegradable foams. Int J Biol Macromol 147:1343–1353. https://doi.org/10.1016/j.ijbiomac.2019.10.098

    Article  CAS  Google Scholar 

  17. Nansu W, Ross S, Ross G, Mahasaranon S (2019) Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Mater Today 17:2010–2019

    CAS  Google Scholar 

  18. Chiarathanakrit C, Riyajan SA, Kaewtatip K (2018) Transforming fish scale waste into an efficient filler for starch foam. Carbohydr Polym 188:48–53. https://doi.org/10.1016/j.carbpol.2018.01.101

    Article  CAS  Google Scholar 

  19. Evon P, Vinet J, Labonne L, Rigal L (2015) Influence of thermo-pressing conditions on the mechanical properties of biodegradable fiberboards made from a deoiled sunflower cake. Ind Crops Prod 65:117–126. https://doi.org/10.1016/j.indcrop.2014.11.036

    Article  CAS  Google Scholar 

  20. Rouilly A, Orliac O, Silvestre F, Rigal L (2006) New natural injection-moldable composite material from sunflower oil cake. Bioresour Technol 97:553–561. https://doi.org/10.1016/j.biortech.2005.04.022

    Article  CAS  Google Scholar 

  21. Garcia MA, Martino MN, Zaritzky NE (2000) Lipid addition to improve barrier properties of edible starch-based films and coatings. J Food Sci 65:941–944. https://doi.org/10.1111/j.1365-2621.2000.tb09397.x

    Article  CAS  Google Scholar 

  22. Rychter P, Kot M, Bajer K et al (2016) Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth. Carbohydr Polym 137:127–138. https://doi.org/10.1016/j.carbpol.2015.10.051

    Article  CAS  Google Scholar 

  23. Wang JL, Cheng F, Zhu PX (2014) Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr Polym 101:1109–1115

    Article  CAS  Google Scholar 

  24. Ma X, Yu J, He K, Wang N (2007) The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromol Mater Eng 292:503–510. https://doi.org/10.1002/mame.200600445

    Article  CAS  Google Scholar 

  25. Ivanič F, Kováčová M, Chodák I (2019) The effect of plasticizer selection on properties of blends poly(butylene adipate-co-terephthalate) with thermoplastic starch. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2019.03.042

    Article  Google Scholar 

  26. Versino F, García MA (2018) Starch films for agronomic applications: comparative study of urea and glycerol as plasticizers. Int J Environ Agric Biotechnol 3:1854–1864. https://doi.org/10.22161/ijeab/3.5.38

    Article  Google Scholar 

  27. Correa AC, Carmona VB, Simão JA et al (2017) Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): morphological, rheological, thermal and mechanical properties. Carbohydr Polym 167:177–184. https://doi.org/10.1016/j.carbpol.2017.03.051

    Article  CAS  Google Scholar 

  28. Majeed Z, Mansor N, Man Z, Wahid SA (2016) Lignin reinforcement of urea-crosslinked starch films for reduction of starch biodegradability to improve slow nitrogen release properties under natural aerobic soil condition. E-Polymers 16:159–170. https://doi.org/10.1515/epoly-2015-0231

    Article  CAS  Google Scholar 

  29. Ji W, Wang D, Guo J et al (2020) The preparation of starch derivatives reacted with urea-phosphoric acid and effects on fire performance of expandable polystyrene foams. Carbohydr Polym 233:115841. https://doi.org/10.1016/j.carbpol.2020.115841

    Article  CAS  Google Scholar 

  30. Chowdray KP, Krishna Chaithanya K (2010) Preparation and evaluation of cross linked starch urea- a new polymer for controlled release of aceclofenac. Asian J Chem 22:4265–4270

    Google Scholar 

  31. Chen M, Chen B, Evans JRG (2005) Novel thermoplastic starch-clay nanocomposite foams. Nanotechnology 16:2334–2337. https://doi.org/10.1088/0957-4484/16/10/056

    Article  CAS  Google Scholar 

  32. Stradella L, Argentero M (1993) A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochim Acta 219:315–323. https://doi.org/10.1016/0040-6031(93)80508-8

    Article  CAS  Google Scholar 

  33. Brack W, Heine B, Birkhold F et al (2014) Kinetic modeling of urea decomposition based on systematic thermogravimetric analyses of urea and its most important by-products. Chem Eng Sci 106:1–8. https://doi.org/10.1016/j.ces.2013.11.013

    Article  CAS  Google Scholar 

  34. Wang D, Dong N, Niu Y, Hui S (2019) A review of urea pyrolysis to produce NH3 used for NOx removal. J Chem. https://doi.org/10.1155/2019/6853638

    Article  Google Scholar 

  35. Versino F, López OV, García MA (2015) Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development. Ind Crops Prod 65:79–89. https://doi.org/10.1016/j.indcrop.2014.11.054

    Article  CAS  Google Scholar 

  36. Versino F, García MA (2014) Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind Crops Prod 58:305–314. https://doi.org/10.1016/j.indcrop.2014.04.040

    Article  CAS  Google Scholar 

  37. Versino F, García MA (2019) Particle size distribution effect on cassava starch and cassava bagasse biocomposites. ACS Sustain Chem Eng 7:1052–1060. https://doi.org/10.1021/acssuschemeng.8b04700

    Article  CAS  Google Scholar 

  38. Di Rienzo JA, Casanoves F, Balzarini MG, et al (2011) Infostat software

  39. Osman NS, Sapawe N, Sapuan MA et al (2018) Sunflower shell waste as an alternative animal feed. Mater Today 5:21905–21910

    Google Scholar 

  40. Sarmiento AM, Guzmán HL, Morales G et al (2016) Expanded polystyrene (EPS) and Waste cooking oil (WCO): from urban wastes to potential material of construction. Waste Biomass Valoriz 7:1245–1254. https://doi.org/10.1007/s12649-016-9511-7

    Article  CAS  Google Scholar 

  41. Polat S, Uslu M-K, Aygün A, Certel M (2013) The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. J Food Eng 116:267–276. https://doi.org/10.1016/j.jfoodeng.2012.12.017

    Article  CAS  Google Scholar 

  42. Matsuda DKM, Verceheze AES, Carvalho GM et al (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crops Prod 44:705–711. https://doi.org/10.1016/j.indcrop.2012.08.032

    Article  CAS  Google Scholar 

  43. Pornsuksomboon K, Holló BB, Szécsényi KM, Kaewtatip K (2016) Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydr Polym 136:107–112. https://doi.org/10.1016/j.carbpol.2015.09.019

    Article  CAS  Google Scholar 

  44. Mali S, Debiagi F, Grossmann MVE, Yamashita F (2010) Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: a mixture design approach. Ind Crops Prod 32:353–359. https://doi.org/10.1016/J.INDCROP.2010.05.014

    Article  CAS  Google Scholar 

  45. Bergel BF, da Luz LM, Santana RMC (2017) Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch. Prog Org Coat 106:27–32. https://doi.org/10.1016/j.porgcoat.2017.02.010

    Article  CAS  Google Scholar 

  46. Madival S, Auras R, Singh SP, Narayan R (2009) Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J Clean Prod 17:1183–1194. https://doi.org/10.1016/j.jclepro.2009.03.015

    Article  CAS  Google Scholar 

  47. Ingrao C, Lo Giudice A, Bacenetti J et al (2015) Foamy polystyrene trays for fresh-meat packaging: life-cycle inventory data collection and environmental impact assessment. Food Res Int 76:418–426. https://doi.org/10.1016/j.foodres.2015.07.028

    Article  CAS  Google Scholar 

  48. Suwanmanee U, Varabuntoonvit V, Chaiwutthinan P et al (2013) Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int J Life Cycle Assess 18:401–417. https://doi.org/10.1007/s11367-012-0479-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Projects PICT 2015-0921 and 2014-2410) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Moreover, Florencia Versino wishes to acknowledge CONICET as well for a Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FV, OVL, MAG. The first draft of the manuscript was written by FV and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Florencia Versino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10924_2020_1981_MOESM1_ESM.docx

Electronic supplementary material 1 (DOCX 3541 kb). SEM micrographs of the foams obtained at different processing conditions (temperature and time variations) for control starch-based foams with and without urea, and photograph of foams subjected to biodegradation under compositing conditions in soil before and after 60 days of burial

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Versino, F., López, O.V. & García, M.A. Sunflower Oil Industry By-product as Natural Filler of Biocomposite Foams for Packaging Applications. J Polym Environ 29, 1869–1879 (2021). https://doi.org/10.1007/s10924-020-01981-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01981-8

Keywords

  • Starch foams
  • Renewable materials
  • Biodegradable
  • Fibrous fillers
  • Disposable packaging