A Review on the Applicability of Life Cycle Assessment to Evaluate the Technical and Environmental Properties of Waste Electrical and Electronic Equipment


Acrylonitrile–butadiene–styrene (ABS) copolymer and high-impact polystyrene (HIPS) are the plastics most commonly found in waste electrical and electronic equipment (WEEE), although properties generally decline with recycling. Technical studies are important in assessing the properties of recycled plastics and obtaining better evidence of their return or not to the same production cycle, through a study of their impacts and life cycle assessment (LCA). This article aimed at a literature search for information that demonstrates the importance of considering the technical property results of LCA studies on WEEE plastics. LCA studies show that recycling WEEE plastics, when compared with virgin raw material, prevents 87% of ABS gas emissions, in addition to reducing energy consumption by up to 90% for ABS and HIPS. However, some technical properties of recycled WEEE polymer material, such as impact strength and ultimate elongation, decline when compared to virgin materials, which may hinder their reinsertion into the same production cycle. These properties can be enhanced by preparing compatible mixtures of ABS and HIPS, or by mixing them with virgin polymers. Recycled ABS (not mixed with another material) can return to the same production cycle when the goal is to preserve the modulus of elasticity. Studies that investigate properties using LCA are scarce. However, they are important in determining the viability of the material returning or not to the same production cycle, which would impact the process and produce different LCA results. Recycled ABS and HIPS polymers from WEEE can return to the same function even if some properties decline, since properties can be improved when the polymers are properly mixed or made compatible, thereby lowering costs and primarily minimizing the negative environmental impacts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3





Central processing unit


Cathodic Ray Tube


Energy dispersive X-ray fluorescence spectrometry


Electrical and electronic equipment


Fourier-transform infrared spectroscopy


High-impact polystyrene


Inductively-Coupled Plasma Optical Emission Spectrometry


Life cycle assessment


Liquid crystal display


Light-emitting diode


Laser-induced breakdown spectroscopy


Melt Flow Index


Near-infrared spectroscopy




Polybutadiene rubber phase






Styrene-acrylonitrile copolymer


Styrene-butadiene styrene copolymer


Styrene-butadiene copolymer


Scanning electron microscopy


Waste electrical and electronic equipment


Thermogravimetric analysis


X-ray fluorescence


  1. 1.

    Balde CP, Forti V, Gray V, et al (2017) The global e-waste monitor 2017.

  2. 2.

    Ongondo FO, Williams ID, Cherrett TJ (2011) How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Manag 31(4):714–730. https://doi.org/10.1016/j.wasman.2010.10.023

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Menikpura SNM, Santo A, Hotta Y (2014) Assessing the climate co-benefits from waste electrical and electronic equipment (WEEE) recycling in Japan. J Clean Prod 74:183–190. https://doi.org/10.1016/j.jclepro.2014.03.040

    Article  Google Scholar 

  4. 4.

    Campolina JM, Sigrist CSL, de Paiva JMF et al (2017) A study on the environmental aspects of WEEE plastic recycling in a Brazilian company. Int J Life Cycle Assess 22:1957–1968. https://doi.org/10.1007/s11367-017-1282-2

    CAS  Article  Google Scholar 

  5. 5.

    Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

    Article  Google Scholar 

  6. 6.

    Kalmykova Y, Sadagopan M, Rosado L (2018) Circular economy—from review of theories and practices to development of implementation tools. Resour Conserv Recycl 135:190–201. https://doi.org/10.1016/j.resconrec.2017.10.034

    Article  Google Scholar 

  7. 7.

    Ibanescu D, Cailean Gavrilescu D, Teodosiu C, Fiore S (2018) Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries. Waste Manag 73:39–53. https://doi.org/10.1016/j.wasman.2017.12.022

    Article  PubMed  Google Scholar 

  8. 8.

    Wang R, Xu Z (2014) Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review. Waste Manag 34(8):1455–1469. https://doi.org/10.1016/j.wasman.2014.03.004

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Buekens A, Yang J (2014) Recycling of WEEE plastics: a review. J Mater Cycles Waste Manag 16(3):415–434. https://doi.org/10.1007/s10163-014-0241-2

    CAS  Article  Google Scholar 

  10. 10.

    Wäger PA, Hischier R (2015) Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant. Sci Total Environ 529:158–167. https://doi.org/10.1016/j.scitotenv.2015.05.043

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ismail H, Hanafiah MM (2019) An overview of LCA application in WEEE management: current practices, progress and challenges. J Clean Prod 232:79–93. https://doi.org/10.1016/j.jclepro.2019.05.329

    Article  Google Scholar 

  12. 12.

    Huysveld S, Hubo S, Ragaert K, Dewulf J (2019) Advancing circular economy benefit indicators and application on open-loop recycling of mixed and contaminated plastic waste fractions. J Clean Prod 211:1–13. https://doi.org/10.1016/j.jclepro.2018.11.110

    Article  Google Scholar 

  13. 13.

    Palmieri R, Bonifazi G, Serranti S (2014) Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Waste Manag 34(11):2120–2130. https://doi.org/10.1016/j.wasman.2014.06.003

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Pacesila M, Ciocoiu CN, Colesca SE, Burcea ŞG (2015) An overview of cost benefit analysis for WEEE recycling projects. Proceedings of 9th international management conference, pp 321–332

  15. 15.

    Magalini F, Huisman J (2007) Management of WEEE & Cost Models across the EU: Could the EPR principle lead US to a better environmental policy? In: IEEE International Symposium on Electronics and the Environment, pp 143–148

  16. 16.

    Smith CS (2015) The Economics of E-waste and the cost to the environment. Nat Resour Environ 30:1–4

    CAS  Google Scholar 

  17. 17.

    Gerbase AE, De Oliveira CR (2012) Reciclagem do lixo de informática: Uma oportunidade para a química. Quim Nova 35(7):1486–1492. https://doi.org/10.1590/S0100-40422012000700035

    CAS  Article  Google Scholar 

  18. 18.

    Nnorom IC, Osibanjo O (2008) Sound management of brominated flame retarded (BFR) plastics from electronic wastes: state of the art and options in Nigeria. Resour Conserv Recycl 52(12):1362–1372. https://doi.org/10.1016/j.resconrec.2008.08.001

    Article  Google Scholar 

  19. 19.

    European Parliament (2012) Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE) (recast). Off J Eur Union.

  20. 20.

    ASTM - American Society for Testing and Materials (2013) D7611 Standard Practice for Coding Plastic Manufactured Articles for Resin Identification. Current

  21. 21.

    Taurino R, Pozzi P, Zanasi T (2010) Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling. Waste Manag 30(12):2601–2607. https://doi.org/10.1016/j.wasman.2010.07.014

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    De Souza AMC, Cucchiara MG, Ereio AV (2016) ABS/HIPS blends obtained from WEEE: influence of processing conditions and composition. J Appl Polym Sci 133:1–7. https://doi.org/10.1002/app.43831

    CAS  Article  Google Scholar 

  23. 23.

    Hirayama D, Saron C (2015) Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil. Waste Manag Res 33:543–549. https://doi.org/10.1177/0734242X15584845

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Stenvall E, Tostar S, Boldizar A et al (2013) An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Manag 33(4):915–922. https://doi.org/10.1016/j.wasman.2012.12.022

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Beigbeder J, Perrin D, Mascaro JF, Lopez-Cuesta JM (2013) Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices. Resour Conserv Recycl 78:105–114. https://doi.org/10.1016/j.resconrec.2013.07.006

    Article  Google Scholar 

  26. 26.

    Martinho G, Pires A, Saraiva L, Ribeiro R (2012) Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manag 32(6):1213–1217. https://doi.org/10.1016/j.wasman.2012.02.010

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Monteiro MR, Moreira DGG, Chinelatto MA et al (2007) Characterization and recycling of polymeric components present in cell phones. J Polym Environ 15:195–199. https://doi.org/10.1007/s10924-007-0060-9

    CAS  Article  Google Scholar 

  28. 28.

    Aquino FWB, Pereira-Filho ER (2015) Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: chemometric applications for better data interpretation. Talanta 134:65–73. https://doi.org/10.1016/j.talanta.2014.10.051

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Menad N, Guignot S, van Houwelingen JA (2013) New characterisation method of electrical and electronic equipment wastes (WEEE). Waste Manag 33(3):706–713. https://doi.org/10.1016/j.wasman.2012.04.007

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Arends D, Schlummer M, Mäurer A et al (2015) Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres. Waste Manag Res 33(9):775–784. https://doi.org/10.1177/0734242X15588585

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Cucchiella F, D’Adamo I, Lenny Koh SC, Rosa P (2015) Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew Sustain Energy Rev 51:263–272. https://doi.org/10.1016/j.rser.2015.06.010

    Article  Google Scholar 

  32. 32.

    Delgado C, Barruetabeña L, Salas O (2007) Assessment of the environmental advantages and drawbacks of existing and emerging polymers recovery processes. Seville. https://doi.org/10.2791/46661

    Article  Google Scholar 

  33. 33.

    Brennan LB, Isaac DH, Arnold JC (2002) Recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. J Appl Polym Sci 86:572–578. https://doi.org/10.1002/app.10833

    CAS  Article  Google Scholar 

  34. 34.

    Dimitrakakis E, Janz A, Bilitewski B, Gidarakos E (2009) Small WEEE: determining recyclables and hazardous substances in plastics. J Hazard Mater 161(2–3):913–919. https://doi.org/10.1016/j.jhazmat.2008.04.054

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hirayama D, Saron C (2018) Morphologic and mechanical properties of blends from recycled acrylonitrile-butadiene-styrene and high-impact polystyrene. Polymer (Guildf) 135:271–278. https://doi.org/10.1016/j.polymer.2017.12.038

    CAS  Article  Google Scholar 

  36. 36.

    Maris E, Botané P, Wavrer P, Froelich D (2015) Characterizing plastics originating from WEEE: a case study in France. Miner Eng 76:28–37. https://doi.org/10.1016/j.mineng.2014.12.034

    CAS  Article  Google Scholar 

  37. 37.

    Chancerel P, Rotter S (2009) Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manag 29(8):2336–2352. https://doi.org/10.1016/j.wasman.2009.04.003

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Vazquez YV, Barbosa SE (2016) Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization. Waste Manag 53:196–203. https://doi.org/10.1016/j.wasman.2016.04.022

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Wagner F, Peeters JR, Ramon H et al (2020) Quality assessment of mixed plastic flakes from waste electrical and electronic equipment (WEEE) by spectroscopic techniques. Resour Conserv Recycl 158:104801. https://doi.org/10.1016/j.resconrec.2020.104801

    Article  Google Scholar 

  40. 40.

    Schlummer M, Vogelsang J, Fiedler D et al (2015) Rapid identification of polystyrene foam wastes containing hexabromocyclododecane or its alternative polymeric brominated flame retardant by X-ray fluorescence spectroscopy. Waste Manag Res 33:662–670. https://doi.org/10.1177/0734242X15589783

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Sindiku O, Babayemi JO, Tysklind M et al (2015) Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in e-waste plastic in Nigeria. Environ Sci Pollut Res 22:14515–14529. https://doi.org/10.1007/s11356-015-5260-6

    CAS  Article  Google Scholar 

  42. 42.

    Delva L, Hubo S, Cardon L, Ragaert K (2018) On the role of flame retardants in mechanical recycling of solid plastic waste. Waste Manag 82:198–206. https://doi.org/10.1016/j.wasman.2018.10.030

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Sahajwalla V, Gaikwad V (2018) The present and future of e-waste plastics recycling. Curr Opin Green Sustain Chem 13:102–107. https://doi.org/10.1016/j.cogsc.2018.06.006

    Article  Google Scholar 

  44. 44.

    Schlummer M, Mäurer A, Leitner T, Spruzina W (2006) Report: Recycling of flame-retarded plastics from waste electric and electronic equipment (WEEE). Waste Manag Res 24:573–583. https://doi.org/10.1177/0734242X06068520

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58. https://doi.org/10.1016/J.WASMAN.2017.07.044

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Singh N, Hui D, Singh R et al (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B Eng 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013

    CAS  Article  Google Scholar 

  47. 47.

    Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B Biol Sci 364:2115–2126. https://doi.org/10.1098/rstb.2008.0311

    CAS  Article  Google Scholar 

  48. 48.

    Long E, Kokke S, Lundie D et al (2016) Technical solutions to improve global sustainable management of waste electrical and electronic equipment (WEEE) in the EU and China. J Remanufacturing. https://doi.org/10.1186/s13243-015-0023-6

    Article  Google Scholar 

  49. 49.

    Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater 99(3):243–263. https://doi.org/10.1016/S0304-3894(03)00061-X

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Achilias DS, Antonakou EV, Koutsokosta E, Lappas AA (2009) Chemical recycling of polymers from waste electric and electronic equipment. J Appl Polym Sci 114:212–221. https://doi.org/10.1002/app.30533

    CAS  Article  Google Scholar 

  51. 51.

    da Spinacé MA, De Paoli MA (2005) A tecnologia da reciclagem de polímeros. Quim Nova 28(1):65–72. https://doi.org/10.1590/s0100-40422005000100014

    Article  Google Scholar 

  52. 52.

    Ha KH, Kim MS (2012) Application to refrigerator plastics by mechanical recycling from polypropylene in waste-appliances. Mater Des 34:252–257. https://doi.org/10.1016/j.matdes.2011.08.014

    CAS  Article  Google Scholar 

  53. 53.

    ISO - International Organization for Standardization (2006) 14040: Environmental management–life cycle assessment—Principles and framework

  54. 54.

    Huysman S, De Schaepmeester J, Ragaert K et al (2017) Performance indicators for a circular economy: a case study on post-industrial plastic waste. Resour Conserv Recycl 120:46–54. https://doi.org/10.1016/j.resconrec.2017.01.013

    Article  Google Scholar 

  55. 55.

    Nazaro MS, Zanghelini GM, Cherubini E et al (2017) The influence of functional unit on life cycle assessment of lamps: a review of results. LALCA—Rev Latino-Americana em Avaliação do Ciclo Vida 1(1):9–44. https://doi.org/10.18225/lalca.v1i1.1884

    Article  Google Scholar 

  56. 56.

    Gu F, Guo J, Zhang W et al (2017) From waste plastics to industrial raw materials: a life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci Total Environ 601–602:1192–1207. https://doi.org/10.1016/j.scitotenv.2017.05.278

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Wäger PA, Hischier R, Eugster M (2011) Environmental impacts of the Swiss collection and recovery systems for waste electrical and electronic equipment (WEEE): A follow-up. Sci Total Environ 409(10):1746–1756. https://doi.org/10.1016/j.scitotenv.2011.01.050

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Alston SM, Arnold JC (2011) Environmental impact of pyrolysis of mixed WEEE plastics part 2: life cycle assessment. Environ Sci Technol 45:9386–9392. https://doi.org/10.1021/es2016654

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Gu F, Zhang W, Guo J, Hall P (2019) Exploring “Internet+Recycling”: Mass balance and life cycle assessment of a waste management system associated with a mobile application. Sci Total Environ 649:172–185. https://doi.org/10.1016/j.scitotenv.2018.08.298

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Hahladakis JN, Velis CA, Weber R et al (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Scaffaro R, Botta L, Di Benedetto G (2012) Physical properties of virgin-recycled ABS blends: effect of post-consumer content and of reprocessing cycles. Eur Polym J 48(3):637–648. https://doi.org/10.1016/j.eurpolymj.2011.12.018

    CAS  Article  Google Scholar 

  62. 62.

    Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93(3):561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008

    CAS  Article  Google Scholar 

  63. 63.

    Karahaliou EK, Tarantili PA (2009) Stability of ABS compounds subjected to repeated cycles of extrusion processing. Polym Eng Sci 49(11):2269–2275. https://doi.org/10.1002/pen.21480

    CAS  Article  Google Scholar 

  64. 64.

    Tarantili PA, Mitsakaki AN, Petoussi MA (2010) Processing and properties of engineering plastics recycled from waste electrical and electronic equipment (WEEE). Polym Degrad Stab 95(3):405–410. https://doi.org/10.1016/j.polymdegradstab.2009.11.029

    CAS  Article  Google Scholar 

  65. 65.

    Bai X, Isaac DH, Smith K (2007) Reprocessing acrylonitrile-butadiene-styrene plastics: structure-property relationships. Polym Eng Sci 47(2):120–130. https://doi.org/10.1002/pen.20681

    CAS  Article  Google Scholar 

  66. 66.

    Ramesh V, Biswal M, Mohanty S, Nayak SK (2014) Recycling of engineering plastics from waste electrical and electronic equipments: Influence of virgin polycarbonate and impact modifier on the final performance of blends. Waste Manag Res 32(5):379–388. https://doi.org/10.1177/0734242X14528404

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Xu G, Qiao J, Kuswanti C et al (2002) Characterization of virgin and postconsumer blended high-impact polystyrene resins for injection molding. J Appl Polym Sci 84(1):1–8. https://doi.org/10.1002/app.2339

    CAS  Article  Google Scholar 

  68. 68.

    Vazquez YV, Barbosa SE (2017) Process window for direct recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from electrical and electronic equipment waste. Waste Manag 59:403–408. https://doi.org/10.1016/j.wasman.2016.10.021

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. https://doi.org/10.1021/cr0500535

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Paramés J, De BJ (2010) Materiais de construção nanotecnológicos de auto-limpeza. Teor e Prática na Eng Civ 15:55–62

    Google Scholar 

  71. 71.

    Arnold JC, Watson T, Alston S et al (2010) The use of FTIR mapping to assess phase distribution in mixed and recycled WEEE plastics. Polym Test 29(4):459–470. https://doi.org/10.1016/j.polymertesting.2010.02.006

    CAS  Article  Google Scholar 

Download references


The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship awarded to Flávia Teixeira, the National Scientific Research Council (CNPq) and the Research Support Foundation of Rio de Janeiro state (FAPERJ).

Author information



Corresponding authors

Correspondence to Flávia da Silva Müller Teixeira or Elen Beatriz Acordi Vasques Pacheco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva Müller Teixeira, F., de Carvalho Peres, A.C., Gomes, T.S. et al. A Review on the Applicability of Life Cycle Assessment to Evaluate the Technical and Environmental Properties of Waste Electrical and Electronic Equipment. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01966-7

Download citation


  • Recycling
  • ABS
  • HIPS
  • Waste electrical and electronic equipment
  • Life cycle assessment
  • Properties