Skip to main content
Log in

Optimisation of Operatory Conditions for Synthesis of Sunflower Oil Biobased Polyols Using Design of Experiments and Spectroscopic Methods

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present work studies the synthesis of biopolyols based on epoxidized sunflower oil (ESFO) and obtained via alcoholysis reaction. The ring opening reaction ESFO (with an oxirane index: O.O% of 6.2%) was carried using an alcohol solution and boron trifluoride (as catalyst). The operatory conditions of synthesis were optimized using a design of experiment (DOE). Alcohol content, catalyst percent as well as temperature were varied according to a JMP software matrix. Reaction conversion was followed by determination of the decrease of epoxy ring using titration method as well as an increase of the hydroxide group. The synthesized polyols were characterized using Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The results showed that oxirane ring has totally disappeared (in some formulations) which means full conversion. The full factorial design is an efficient method for testing the effect of operatory conditions especially in limiting the number of synthesis experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bastioli C (2005) Handbook of biodegradable polymers. Rapra Technology Limited, United Kingdom

    Google Scholar 

  2. Domb AJ, Kost J, Wiseman DM (1997) Handbook of biodegradable polymers. Overseas Publishers Association, Amsterdam

    Google Scholar 

  3. Shalaby SW, Burg KJL (2005) Absorbable and biodegradable polymers. Taylor & Francis e-Library, London

    Google Scholar 

  4. Karlsson S, Albertsson AC (1998) Biodegradable polymers and environmental interaction. Polym Eng Sci 38(8):1251–1253. https://doi.org/10.1002/pen.10294

    Article  CAS  Google Scholar 

  5. Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10. https://doi.org/10.1080/15583720701834133

    Article  CAS  Google Scholar 

  6. Hodakowski LE et al (1978) Polymerisable epoxide-modified compositions. US Patent 4(119):640

    Google Scholar 

  7. Javni I, Zhang W, Petrovic ZS (2004) Soybean-oil-based polyisocyanurate rigid foams. J Polym Environ 12(3):123–129. https://doi.org/10.1023/B:JOOE.0000038543.77820.be

    Article  CAS  Google Scholar 

  8. Petrovic Z, Javni I, Guo A, Zhang W (2002) Method of making natural oil-based polyols and polyurethanes foams. US Patent, 6433121.

  9. Li F, Larock RC (2002) New soybean oil-styrene-divinyl benzene thermosetting copolymers, V: Shape memory effect. J Appl Polym Sci 84:1533–1543. https://doi.org/10.1002/app.10493

    Article  CAS  Google Scholar 

  10. Benaniba M, Belhaneche-Bensemra N, Gelbard G (2001) Stabilizing effect of epoxidized sunflower oil on the thermal degradation of poly (vinyl chloride). Polym Degrad Stab 74(3):501–505. https://doi.org/10.1016/S0141-3910(01)00170-7

    Article  CAS  Google Scholar 

  11. Benaniba M, Belhaneche-Bensemra N, Gelbard G (2003) Stabilization of PVC by epoxidized sunflower oil in the presence of zinc and calcium stearates. Polym Degrad Stab 82(2):245–249. https://doi.org/10.1016/S0141-3910(03)00178-2

    Article  CAS  Google Scholar 

  12. Benaniba M, Belhaneche-Bensemra N, Gelbard G (2007) Kinetics of tungsten-catalyzed sunflower oil epoxidation studied by 1H NMR. Eur J Lipid Sci Technol 109(12):1186–1193. https://doi.org/10.1002/ejlt.200700114

    Article  CAS  Google Scholar 

  13. Godoy SC, Ferrao MF, Gerbase AE (2007) Determination of the hydroxyl value of soybean polyol by attenuated total reflectance/Fourier transform infrared spectroscopy. J Amer Oil Chem Soc 84:503–508. https://doi.org/10.1007/s11746-007-1067-z

    Article  CAS  Google Scholar 

  14. Petrovic ZS, Guo A, Zhang W (2000) J Polym Sci Part A Polym Chem 38:4062–4069

    Article  CAS  Google Scholar 

  15. Goupy J (2005) Pratiquer les plans d’expériences. Dunod, Paris

    Google Scholar 

  16. Goupy J, Creighton L (2006) Introduction aux plans d’expériences. Dunod, Paris

    Google Scholar 

  17. Irinislimane R, Belhaneche-Bensemra N (2012) Application offourier transform infrared (FT-IR) spectroscopy to the study of the modification of epoxidized sunflower oil by acrylation. Appl Spectrosc 66(12):1420–1425. https://doi.org/10.1366/12-06599

    Article  CAS  PubMed  Google Scholar 

  18. ASTM Standard E1899–08 (2011) Standard test method for hydroxyl groups using reaction with p-Toluenesulfonylisocyanate (TSI) and potentiometric titration with tetrabutylammonium hydroxide

  19. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1989) Vogel’s textbook of practical and organic chemistry, 5th edn. Longman Group, United Kingdom

    Google Scholar 

  20. Bertrand D, Dufour E (2006) Spectroscopie infrarouge et ses applications analytiques. Lavoisier, Paris

    Google Scholar 

  21. Braun D (1999) Simple methods for identification of plastics. Carl Hanser Verlag, Munich

    Google Scholar 

  22. Thopham O, Petiaud R (1980) Spectres RMN des polymères 1H–13C, 1st edn. SCM, Paris

    Google Scholar 

  23. Allinger NL, Cava MP, De Jongh DC, Johnson CR, Lebel NA, Stevens CL (1976) Chimie organique. Volume III: applications. McGraw-Hill, Paris

    Google Scholar 

  24. Solomons G, Fryhle C (2000) Chimie organique. Modulo, Canada

    Google Scholar 

Download references

Acknowledgements

This work was supported by DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique, Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Belhaneche-Bensemra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irinislimane, R., Belhaneche-Bensemra, N. Optimisation of Operatory Conditions for Synthesis of Sunflower Oil Biobased Polyols Using Design of Experiments and Spectroscopic Methods. J Polym Environ 29, 851–858 (2021). https://doi.org/10.1007/s10924-020-01917-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01917-2

Keywords