Skip to main content

Advertisement

Log in

The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This review discusses the potentials of corn waste fibres as an alternative source of reinforcement to other natural fibres for bioplastic composites. The growing sustainability concern has urged the search for new composites and the potential exists to stimulate more research in bringing it to markets. Corn (Zea mays L.) waste fibres are lignocellulosic fibres that constituted of corn cob, corn husk, corn stalk and corn stover which are often discarded. Physico-chemical properties of the lignocellulosic fibres from different sources are compared. Studies on lignocellulosic fibre reinforced bioplastic composites and state-of-the-art of corn fibre reinforced composites are reviewed. The preparations of the fibres to form nanofibril, cellulose nanofibril and lignin-containing cellulose nanofibril are also discussed. Along with this, issues to improve fibre-plastic matrix compatibility through mechanical disintegration and surface modification treatment on fibre are also reported. This review shows that corn waste is suitable to be used as a reinforcement filler for bioplastic. Further treatment on the fibres could lead to improved properties of the composite for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

APS:

3-Aminopropyltrithoxysilance

CNF:

Cellulosic nanofibril

LCNF:

Lignin-containing cellulosic nanofibril

PET:

Polyethylene terephthalate

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

PLA:

Polylactic acid

TPS:

Thermoplastic starch

References

  1. Karan H et al (2019) Green bioplastics as part of a circular bioeconomy. Trends Plant Sci 24(3):237–249

    CAS  PubMed  Google Scholar 

  2. Brodin M et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664

    CAS  Google Scholar 

  3. Thakur S et al (2018) Sustainability of bioplastics: opportunities and challenges. Curr Opin Green Sustain Chem 13:68–75

    Google Scholar 

  4. European Bioplastic (2018) Bioplastics—Industry standards & labels

  5. European Bioplastic (2018) Bioplastics market data 2018

  6. Al Jahwari F, Pervez T (2019) The potential of environmental-friendly biopolymers as an alternative to conventional petroleum-based polymers. In: Reference module in materials science and materials engineering. Elsevier.

  7. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87(2):963–979

    CAS  Google Scholar 

  8. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers (Basel) 11(5):751

    CAS  Google Scholar 

  9. Nagaraj K, Bharath D, Basavarajappa S (2015) Applications of biocomposite materials based on natural fibers from renewable resources: a review. Sci Eng Compos Mater 23:123

    Google Scholar 

  10. Shalwan A, Yousif B (2012) In State of Art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14

    Google Scholar 

  11. Moustafa H et al (2019) Eco-friendly polymer composites for green packaging: future vision and challenges. Composites B 172:16–25

    CAS  Google Scholar 

  12. Ferrer A et al (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6):2179–2193

    CAS  Google Scholar 

  13. Salit MS (2014) Tropical natural fibre composites. Springer, Singapore

    Google Scholar 

  14. Miranda MT et al (2018) Analysis of pelletizing from corn cob waste. J Environ Manag 228:303–311

    CAS  Google Scholar 

  15. FAOSTAT (2019) Data

  16. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86(1):1–18

    CAS  Google Scholar 

  17. Grand View Research. Plastic packaging market size, share & trends analysis report by product ( bottles, bags, wraps & films), by type ( rigid, flexible ), by application ( food & beverages, industrial), and segment forecasts, 2018–2025, p 110

  18. Xie Y et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Composites A 41(7):806–819

    Google Scholar 

  19. Saxena M et al (2011) Composite materials from natural resources: recent trends and future potentials

  20. Cardona CA, Sanchez OJ, Gutierrez LF (2010) Process synthesis for fuel ethanol production. CRC Press, Boca Raton

    Google Scholar 

  21. Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohyd Polym 103:528–537

    CAS  Google Scholar 

  22. Fortunati E et al (2016) Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. Eur Polym J 80:295–316

    CAS  Google Scholar 

  23. Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50:5438–5466

    CAS  Google Scholar 

  24. Zhou X, Broadbelt LJ, Vinu R (2016) Chapter two—mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In: Van Geem KM (ed) Advances in chemical engineering. Academic Press, New York, pp 95–198

    Google Scholar 

  25. Müssig J (2010) Industrial applications of natural fibres—structure, properties and technical applications. Wiley, Chichester

    Google Scholar 

  26. Dungani R et al (2016) Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian J Plant Sci 15:42–55

    CAS  Google Scholar 

  27. Lomelí-Ramírez MG et al (2018) Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohyd Polym 201:9–19

    Google Scholar 

  28. Luo H et al (2014) Mechanical and thermo-mechanical behaviors of sizing-treated corn fiber/polylactide composites. Polym Test 39:45–52

    CAS  Google Scholar 

  29. Torres-Tello EV et al (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind Crops Prod 99:117–125

    CAS  Google Scholar 

  30. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites, AK Mohanty, Misra M, Drzal LT (eds). Taylor & Francis/CRC Press, Boca Raton, FL

  31. Song J, Kay M, Coles R (2011) Bioplastics. In: Food and beverage packaging technology, pp 295–319

  32. Marques AP, Reis RL, Hunt JA (2002) The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23(6):1471–1478

    CAS  PubMed  Google Scholar 

  33. Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    CAS  Google Scholar 

  34. Ashok A, Rejeesh CR, Ravindranathan R (2016) Biodegradable polymers for sustainable packaging applications: a review. Int J Bion Biomater 2:1–11

    Google Scholar 

  35. Imam SH et al (1999) Degradation of starch-poly([β-hydroxybutyrate-Co-β-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol 65(2):431–437

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gómez EF, Michel FC (2013) Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym Degrad Stab 98(12):2583–2591

    Google Scholar 

  37. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    CAS  PubMed  Google Scholar 

  38. Pelissari F et al (2017) Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Coll Interface Sci 505:154

    CAS  Google Scholar 

  39. Fitch-Vargas PR et al (2019) Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohyd Polym 219:378–386

    CAS  Google Scholar 

  40. Ago M, Ferrer A, Rojas OJ (2016) Starch-based biofoams reinforced with lignocellulose nanofibrils from residual palm empty fruit bunches. Water Sorpt Mech Streng 4(10):5546–5552

    CAS  Google Scholar 

  41. Travalini AP et al (2019) Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. Int J Biol Macromol 139:1151

    CAS  PubMed  Google Scholar 

  42. Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98(9):1898–1907

    CAS  Google Scholar 

  43. Jang JY et al (2012) Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites. Composites B 43(5):2434–2438

    CAS  Google Scholar 

  44. Paunonen S (2013) Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 8(2):3098–3121

    Google Scholar 

  45. Chan SW et al (2013) Comparative study on the physicochemical properties of κ-carrageenan extracted from Kappaphycus alvarezii (doty) doty ex Silva in Tawau, Sabah, Malaysia and commercial κ-carrageenans. Food Hydrocolloids 30(2):581–588

    CAS  Google Scholar 

  46. Mohanty AK et al (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites A 35(3):363–370

    Google Scholar 

  47. Tabasum S et al (2019) A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int J Biol Macromol 122:969–996

    CAS  PubMed  Google Scholar 

  48. Takada M et al (2018) Characterization of three tissue fractions in corn (Zea mays) cob. Biomass Bioenerg 115:130–135

    CAS  Google Scholar 

  49. Kansas corn. Corn plant structures and functions

  50. Boyrazlı M, Güler SH (2020) Synthesis of carbon nanostructures from corn stalk using mechano-thermal method. J Mol Struct 1199:126976

    Google Scholar 

  51. Lu Z et al (2016) Effects of corn stalk fiber content on properties of biomass brick. Constr Build Mater 127:11–17

    Google Scholar 

  52. Jarabo R et al (2013) Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production. Ind Crops Prod 43:832–839

    CAS  Google Scholar 

  53. Tran KQ, Satomi T, Takahashi H (2018) Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transport Geotech 16:76–84

    Google Scholar 

  54. Luo Z et al (2017) Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Ind Crops Prod 95:521–527

    CAS  Google Scholar 

  55. Ibrahim MIJ et al (2019) Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites. Int J Biol Macromol 139:596–604

    CAS  PubMed  Google Scholar 

  56. Wu M et al (2018) Processing of superfine grinding corn straw fiber-reinforced starch film and the enhancement on its mechanical properties. Polymers 10:855

    PubMed Central  Google Scholar 

  57. Liu Y et al (2019) Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohyd Polym 218:179–187

    CAS  Google Scholar 

  58. Ashori A, Nourbakhsh A, Tabrizi A (2014) Thermoplastic hybrid composites using bagasse, corn stalk and E-glass fibers: fabrication and characterization. Polymer 53:1–8

    CAS  Google Scholar 

  59. Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575

    CAS  Google Scholar 

  60. Sharma B, Malik P, Jain P (2018) Biopolymer reinforced nanocomposites: a comprehensive review. Mater Today Commun 16:353–363

    CAS  Google Scholar 

  61. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Google Scholar 

  62. Njuguna J, Pielichowski K, Alcock J (2007) Epoxy-based fibre reinforced nanocomposites. Adv Eng Mater 9:835–847

    Google Scholar 

  63. Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935

    CAS  Google Scholar 

  64. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    CAS  Google Scholar 

  65. Rol F et al (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    CAS  Google Scholar 

  66. Ibrahim R (2002) Chemical composition of alkaline pulps from oil palm empty fruit bunches. Oil Palm Bull 44:19–24

    CAS  Google Scholar 

  67. Abral H et al (2019) Characterization of disintegrated bacterial cellulose nanofibers/PVA bionanocomposites prepared via ultrasonication. Int J Biol Macromol 135:591–599

    CAS  PubMed  Google Scholar 

  68. Huerta RR, Saldaña MDA (2019) Sequential treatment with pressurized fluid processing and ultrasonication for biorefinery of canola straw towards lignocellulosic nanofiber production. Ind Crops Prod 139:111521

    CAS  Google Scholar 

  69. Gonzalez D, Santos V, Carlos Parajo J (2012) Silane-treated lignocellulosic fibers as reinforcement material in polylactic acid biocomposites. J Thermoplast Compos Mater 25:1005–1022

    Google Scholar 

  70. Indarti E et al (2019) Silylation of TEMPO oxidized nanocellulose from oil palm empty fruit bunch by 3-aminopropyltriethoxysilane. Int J Biol Macromol 135:106–112

    CAS  PubMed  Google Scholar 

  71. Sharma A et al (2019) Commercial application of cellulose nano-composites—a review. Biotechnol Rep 21:e00316

    Google Scholar 

  72. Herrick FW et al (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp

  73. Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169

    CAS  Google Scholar 

  74. Ek M, Gellerstedt G, Henriksson G (2009) Pulp and paper chemistry and technology. Wood chemistry and wood biotechnology, Walter de Gruyter, Berlin1

    Google Scholar 

  75. Ferrer A et al (2011) Milox fractionation of empty fruit bunches from Elaeis guineensis. Biores Technol 102:9755–9762

    CAS  Google Scholar 

  76. Filippis PD, Scarsella M, Verdone N (2009) Peroxyformic acid formation: a kinetic study. Ind Eng Chem Res 48(3):1372–1375

    Google Scholar 

  77. Bolaski W, Gallatin A, Gallatin J (1962) Enzymatic conversion of cellulosic fibers. Patent US, 3041246

  78. Nair S, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137–3150

    CAS  Google Scholar 

  79. Andrade Alves JA et al (2019) Sorghum straw: pulping and bleaching process optimization and synthesis of cellulose acetate. Int J Biol Macromol 135:877–886

    CAS  PubMed  Google Scholar 

  80. Li M et al (2019) Effect of hydrogen peroxide bleaching on anionic groups and structures of sulfonated chemo-mechanical pulp fibers. Colloids Surf A 585:124068

    Google Scholar 

  81. Axegård P (2019) The effect of the transition from elemental chlorine bleaching to chlorine dioxide bleaching in the pulp industry on the formation of PCDD/Fs. Chemosphere 236:124386

    PubMed  Google Scholar 

  82. Fonseca AS et al (2019) Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind Crops Prod 131:203–212

    CAS  Google Scholar 

  83. Rojo E et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853

    CAS  Google Scholar 

  84. Chen H et al (2019) Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces. Chem Eng J 360:393–401

    CAS  Google Scholar 

  85. Nair S et al (2018) Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties. ACS Sustain Chem Eng 6:10058

    CAS  Google Scholar 

  86. Winter A et al (2017) Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose. J Mater Sci 52:60

    CAS  Google Scholar 

  87. Wang X et al (2018) Influence of the lignin content on the properties of poly(lactic acid)/lignin-containing cellulose nanofibrils composite films. Polymers 10:1013

    PubMed Central  Google Scholar 

  88. PRO Scientific Inc. (2019) PRO scientific homogenizers. https://proscientific.com/the-field-of-homogenizing. Accessed 8 Sept 2019

  89. Ferrer A et al (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Biores Technol 125:249–255

    CAS  Google Scholar 

  90. Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541

    CAS  Google Scholar 

  91. Ämmälä A et al (2019) Key role of mild sulfonation of pine sawdust in the production of lignin containing microfibrillated cellulose by ultrafine wet grinding. Ind Crops Prod 140:111664

    Google Scholar 

  92. Li X, Tabil L, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Google Scholar 

  93. Spence K (2011) Processing and properties of microfibrillated cellulose. In: Forest biomaterials

  94. Heidbreder LM et al (2019) Tackling the plastic problem: a review on perceptions, behaviors, and interventions. Sci Total Environ 668:1077–1093

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Curtin University Malaysia in supporting this research. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen San Chan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, T.Y., Law, M.C. & Chan, Y.S. The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites. J Polym Environ 29, 363–381 (2021). https://doi.org/10.1007/s10924-020-01888-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01888-4

Keywords

Navigation