Skip to main content
Log in

Block Copolymers of Poly(ε-caprolactone) with pH-Responsive Side-Chain Amino Acid Moieties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To prepare amphiphilic block copolymers consisting of biocompatible and biodegradable segments, herein we report synthesis of diblock copolymers having ε-caprolactone (ε-CL) repeating units in one block and amino acid-based acrylate monomers in another segment. The block copolymers were prepared by a combination of metal-free ring-opening polymerization (ROP) of ε-CL and reversible addition-fragmentation chain transfer (RAFT) polymerization of tert-butyloxycarbonyl (Boc)-alanine/Boc-leucine based acrylate monomers. The ROP of ε-CL was initiated with diphenyl phosphate (DPP) as a metal-free catalyst in conjunction with a heterofunctional initiator, benzyl-2-hydroxyethyl carbonotrithioate, produced trithiocarbonate terminated poly(ε-caprolactone) (PCL). This was further employed as macro-chain transfer agent for the synthesis of side chain amino acid containing block via RAFT. Deprotection of Boc group pendants from the block copolymers under acidic conditions at room temperature provided pH responsive block copolymers with positively charged cationic primary amine functionalities. Furthermore, self-assembling nature of these block copolymers in aqueous medium was examined through dynamic light scattering (DLS) and field emission-scanning electron microscopy (FE-SEM).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basterretxea A, Jehanno C, Mecerreyes D, Sardon H ( 2019) Dual organocatalysts based on ionic mixtures of acids and bases: a step toward high temperature polymerizations. ACS Macro Lett 8:1055–1062

    CAS  Google Scholar 

  2. Cha Y, Jarrett-Wilkins C, Rahman MdA, Zhu T, Sha Y, Manners I, Tang C (2019) Crystallization-driven self-assembly of metallo-polyelectrolyte block copolymers with a polycaprolactone core-forming segment. ACS Macro Lett. 8:835–840

    CAS  Google Scholar 

  3. Clément B, Grignard B, Koole L, Jérôme C, Lecomte P (2012) Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules 45:4476–4486

    Google Scholar 

  4. Brannigan RP, Dove AP (2017) Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 5:9–21

    CAS  Google Scholar 

  5. Jehanno C, Mezzasalma L, Sardon H, Ruipérez F, Coulembier O, Taton D (2019) Benzoic acid as an efficient organocatalyst for the statistical ring-opening co-polymerization of ε-caprolactone and l-lactide: a computational investigation. Macromolecules 52:9238–9247

    CAS  Google Scholar 

  6. Ren JM, Fu Q, Blencowe A, Qiao GG (2012) Organic catalyst-mediated ring-opening polymerization for the highly efficient synthesis of polyester-based star polymers. ACS Macro Lett. 1:681–686

    CAS  Google Scholar 

  7. Bouyahyi M, Duchateau R (2014) Metal-based catalysts for controlled ring-opening polymerization of macrolactones: high molecular weight and well-Defined copolymer architectures. Macromolecules. 2:517–524

    Google Scholar 

  8. Zhu N, Zhang Z, Feng W, Zeng Y, Li Z, Fang Z, Zhang K, Li Z, Guo K (2015) Sn(OTf)2 catalyzed continuous flow ring-opening polymerization of ε-caprolactone. RSC Adv. 5:31554–31557

    CAS  Google Scholar 

  9. Wang Q, Li H, Wei Q, Sun JZ, Wang J, Zhang XA, Qin A, Tang BZ (2013) Metal-free click polymerizations of activated azide and alkynes. Polym. Chem 4:1396–1401

    CAS  Google Scholar 

  10. Brannigan RP, Walder A, Dove AP (2014) Block copolymer materials from the organocatalytic ring-opening polymerization of a pentaerythritol-derived cyclic carbonate. J Polym Sci Part A: Polym Chem 52:2279–2286

    CAS  Google Scholar 

  11. Higuchi M, Kanazawa A, Aoshima S (2020) Tandem unzipping and scrambling reactions for the synthesis of alternating copolymers by the cationic ring-opening copolymerization of a cyclic acetal and a cyclic ester. ACS Macro Lett. 9:77–83

    CAS  Google Scholar 

  12. Clement B, Grignard B, Koole L, Jerome C, Lecomte P (2012) Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules 45:4476–4486

    CAS  Google Scholar 

  13. Li X, Li H, Zhao Y, Tang X, Ma S, Gong B, Li M (2015) Facile synthesis of well-defined hydrophilic polyesters as degradable poly(ethylene glycol)-like biomaterials. Polym Chem 6:6452–6456

    CAS  Google Scholar 

  14. Danko M, Basko M, Ďurkáčová S, Duda A, Mosnáček J (2018) Functional polyesters with pendant double bonds prepared by coordination-insertion and cationic ring-opening copolymerizations of ε-caprolactone with renewable tulipalin A. Macromolecules 51:3582–3596

    CAS  Google Scholar 

  15. Ercole F, Rodda AE, Meagher L, Forsythe JS, Dove AP (2014) Surface grafted poly(ε-caprolactone) prepared using organocatalysed ring-opening polymerisation followed by SI-ATRP. Polym. Chem. 5:2809–2815

    CAS  Google Scholar 

  16. Zhao J, Pahovnik D, Gnanou Y, Hadjichristidis N (2014) Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid. Macromolecules 47:1693–1698

    CAS  Google Scholar 

  17. Alamri H, Zhao J, Pahovnik D, Hadjichristidis N (2014) Phosphazene-catalyzed ring-opening polymerization of ε-caprolactone: influence of solvents and initiators. Polym. Chem. 5:5471–5478

    CAS  Google Scholar 

  18. Coady J, Horn HW, Jones GO, Sardon H, Engler AC, Waymouth RM, Rice JE, Yang YY, Hedrick JL (2013) Polymerizing base sensitive cyclic carbonates using acid catalysis. ACS Macro Lett. 2:306–312

    CAS  Google Scholar 

  19. Deng Y, Zou T, Tao X, Semetey V, Trepout S, Marco S, Ling J, Li MH (2015) Poly(ε-caprolactone)-block-polysarcosine by ring-opening polymerization of sarcosine N-thiocarboxyanhydride: synthesis and thermoresponsive self-assembly. Biomacromolecules 16:3265–3274

    CAS  PubMed  Google Scholar 

  20. Jose L, Hwang AR, Lee C, Shim K, Song JK, Soo S, An A, Paika H (2020) Nitrilotriacetic acid-end-functionalized polycaprolactone as a template for polymer–protein nanocarriers. Polym Chem 11:1580–1588

    CAS  Google Scholar 

  21. Delplace V, Nicolas J (2015) Degradable vinyl polymers for biomedical applications. Nat. Chem. 7:771–784

    CAS  PubMed  Google Scholar 

  22. Wang S, Kesava SV, Gomez ED, Robertson ML (2013) Sustainable thermoplastic elastomers derived from fatty acids. Macromolecules 46:7202–7212

    CAS  Google Scholar 

  23. Kryuchkov MA, Christophe Detrembleur C, Bazuin G (2014) Linear amphiphilicdiblock copolymers of lactide and 2-dimethylaminoethyl methacrylate using bifunctional-initiator and one-pot approaches. Polymer 55:2316–2324

    CAS  Google Scholar 

  24. Lenoir S, Pagnoulle C, Detrembleur C, Galleni M, Jerome R (2006) New antibacterial cationic surfactants prepared by atom transfer radical polymerization. J. Polym. Sci. Part A: Polym. Chem. 44:1214–1224

    CAS  Google Scholar 

  25. Bauri K, De P, Shah PN, Li R, Faust R (2013) Polyisobutylene-based helical block copolymers with pH-responsive cationic side-Chain amino acid moieties by tandem living polymerizations. Macromolecules 46:5861–5870

    CAS  Google Scholar 

  26. Schmid C, Weidner S, Falkenhagen J, Barner-Kowollik C (2012) In-depth LCCC-(GELC)-SEC characterization of ABA block copolymers generated by a mechanistic switch from RAFT to ROP. Macromolecules 45:87–99

    CAS  Google Scholar 

  27. Mishra AK, Patel VK, Vishwakarma NK, Biswas CS, Raula M, Misra A, Mandal TK, Ray B (2011) Synthesis of well-defined amphiphilicpoly(ε-caprolactone)-b-poly(N-vinylpyrrolidone) block Copolymers via the combination of ROP and xanthate-mediated RAFT polymerization. Macromolecules 44:2465–2473

    CAS  Google Scholar 

  28. Kang HU, Yu YC, Shin SJ, Kim J, Youk JH (2013) One-Pot synthesis of poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) block copolymers using a dual initiator for RAFT polymerization and ROP. Macromolecules 46:1291–1295

    CAS  Google Scholar 

  29. de Freitas AGO, Trindade SG, Muraro PIR, Schmidt V, Satti AJ, Villar MA, Ciolino AE, Giacomelli C (2013) Controlled One-pot synthesis of polystyrene-block-polycaprolactone copolymers by simultaneous RAFT and ROP. Macromol Chem Phys 214:2336–2344

    Google Scholar 

  30. Scarano W, de Souza P, Stenzel MH (2015) Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater Sci 3:163–174

    CAS  PubMed  Google Scholar 

  31. Roy SG, De P (2014) pH responsive polymers with amino acids in the side chains and their potential applications. J Appl Polym Sci 131:41084

    Google Scholar 

  32. Bauri K, Roy SG, De P (2016) Sidechain aminoacidderived cationic chiral polymers by controlled radical polymerization. Macromol Chem Phys 217:365–379

    CAS  Google Scholar 

  33. Sun H, Gao C (2010) Facile Synthesis of multiamino vinyl poly(amino acid)s for promising bioapplications. Biomacromolecules 11:3609–3616

    CAS  PubMed  Google Scholar 

  34. Kumar S, Acharya R, Chatterji U, De P (2013) Controlled synthesis of pH responsive cationic polymers containing side-chain peptide moieties via RAFT polymerization and their self-assembly. J Mater Chem B 1:946–957

    CAS  PubMed  Google Scholar 

  35. Bauri K, Roy SG, Pant S, De P (2013) Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers. Langmuir 29:2764–2774

    CAS  PubMed  Google Scholar 

  36. Roy SG, Acharya R, Chatterji U, De P (2013) RAFT polymerization of methacrylates containing a tryptophan moiety: controlled synthesis of biocompatible fluorescent cationic chiral polymers with smart pH-responsiveness. Polym Chem 4:1141–1152

    CAS  Google Scholar 

  37. Bauri K, Nandi M, De P (2018) Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 9:1257–1287

    CAS  Google Scholar 

  38. Skey J, O’Reilly RK (2008) Facile one pot synthesis of a range of reversible addition–fragmentation chain transfer (RAFT) agents, Chem Commun 4183–4185

  39. Makiguchi K, Satoh T, Kakuchi T (2011) Diphenylphosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules 44:1999–2005

    CAS  Google Scholar 

  40. Batiste C, Meyersohn MS, Watts A, Hillmyer MA (2020) Efficient polymerization of methyl-ε-caprolactone mixtures to access sustainable aliphatic polyesters. Macromolecules 53:1795–1808

    CAS  Google Scholar 

  41. Zhai S, Ma Y, Chen Y, Li D, Cao J, Liu Y, Cai M, Xie X, Chen Y, Luo X (2014) Synthesis of an amphiphilic block copolymer containing zwitterionicsulfobetaine as a novel pH-sensitive drug carrier. Polym Chem 5:1285–1297

    CAS  Google Scholar 

  42. Shimoboji T, Ding ZL, Stayton PS, Hoffman AS (2002) Photoswitching of ligand association with a photoresponsive polymer−protein conjugate. Bioconjug Chem 13:915–919

    CAS  PubMed  Google Scholar 

  43. Haldar U, Nandi M, Ruidas B, De P (2015) Controlled synthesis of amino-acid based tadpole-shaped organic/inorganic hybrid polymers and their self-assembly in aqueous media. Euro Polym J 67:274–283

    CAS  Google Scholar 

  44. Saha A, Paira TK, Biswas M, Jana S, Banerjee S, Mandal TK (2015) Combined atom-transfer radical polymerization and ring-opening polymerization to design polymer–polypeptide copolymer conjugates toward self-aggregated hybrid micro/nanospheres for dye encapsulation. J Polym Sci Part A: Polym Chem 53:2313–2319

    CAS  Google Scholar 

  45. Li M, Song W, Tang Z, Lv S, Lin L, Sun H, Li Q, Yang Y, Hong H, Chen X (2013) Nanoscaledpoly(l-glutamic acid)/doxorubicin-amphiphilecomplex as pH-responsive drug delivery system for effective treatment of non small cell lung cancer. ACS Appl Mater Interfaces 5:1781–1792

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkanna Azmeera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmeera, V., Haldar, U., Roy, S.G. et al. Block Copolymers of Poly(ε-caprolactone) with pH-Responsive Side-Chain Amino Acid Moieties. J Polym Environ 29, 209–218 (2021). https://doi.org/10.1007/s10924-020-01872-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01872-y

Keywords

Navigation