Skip to main content
Log in

Fabrication of PVA Nanofibers Grafted with Octaamino-POSS and their Application in Heavy Metal Adsorption

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Wastewater treatment is one of the focuses in current society, and the removal of heavy metal ions from it is crucial in wastewater treatment. Polyvinyl alcohol (PVA) nanofibers play a certain role in the adsorption of heavy metal ions, but their adsorption capacity is limited. In this work, maleic anhydride (MAH) was first grafted onto the molecular chain of PVA. Then through the condensation of the carboxyl group and the amino group, the octaamino-POSS was successfully grafted on the PVA molecular chain. Two kinds of nanofibers, PVA/octaamino-POSS nanofibers as well as PVA-g-POSS nanofibers, were fabricated by electrospinning technology for the adsorption of Pb2+ and Cu2+ in wastewater. The preparation of PVA/octaamino-POSS was used to compare which metal ion adsorption process was more stable, physical blending or chemical grafting. With the increase of contact time, the adsorption capacity of PVA/octaamino-POSS nanofibers to Cu2+ increased at first and then decreased. It was observed that the adsorption capacity of PVA-g-POSS to heavy metal ions was higher than that of PVA/octaamino-POSS. With the increase of octaamino-POSS content, the equilibrium adsorption of Pb2+ and Cu2+ on PVA-g-POSS nanofibers was significantly improved, with prominent adsorption effect for Cu2+. Based on the analysis of quasi-first-order and quasi-second-order dynamic equation, it was deduced that the chemical adsorption and physical adsorption worked together in the adsorption process of Pb2+ and Cu2+ by PVA-g-POSS, and chemical adsorption played a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sherlala A, Raman A, Bello M, Asghar A (2018) Chemosphere 193:1004–1017

    CAS  PubMed  Google Scholar 

  2. Peydayesh M, Bolisetty S, Mohammadi T, Mezzenga R (2019) Langmuir 35:4161–4170

    CAS  PubMed  Google Scholar 

  3. Gandavadi D, Sundarrajan S, Ramakrishna S (2019) Macromol Mater Eng 304:1900345

    CAS  Google Scholar 

  4. Huang YF, Wu DH, Wang XD, Huang W, Lawless D, Feng XS (2016) Sep Purif Technol 158:124–136

    CAS  Google Scholar 

  5. Kobya M, Demirbas E, Senturk E, Ince M (2005) Bioresour Technol 96:1518–1521

    CAS  PubMed  Google Scholar 

  6. Lo S-F, Wang S-Y, Tsai M-J, Lin L-D (2012) Chem Eng Res Des 90:1397–1406

    CAS  Google Scholar 

  7. Godwin P, Pan Y, Xiao H, Afzal M (2019) J Bioresour Bioprod 4:31–42

    CAS  Google Scholar 

  8. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Bioresour Technol 76:63–65

    CAS  PubMed  Google Scholar 

  9. Wu RP (2019) Ekoloji 28:2443–2452

    Google Scholar 

  10. Fu F, Wang Q (2011) J Environ Manage 92:407–418

    CAS  PubMed  Google Scholar 

  11. Zhang M, Zhang L, Tian H, Lu A (2020) Carbohydr Polym 116037

  12. Hemamalini T, Dev VRG (2018) Int J Biol Macromol 106:712–718

    CAS  PubMed  Google Scholar 

  13. Pokorny M, Novak J, Rebicek J, Klemes J, Velebny V (2015) Nanomater Nanotechnol 5:17

    Google Scholar 

  14. Peng Q, Cheng J, Lu S, Li Y (2020) Polym Adv Technol 31:15–24

    CAS  Google Scholar 

  15. Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) J Polym Sci Part B 40:1261–1268

    CAS  Google Scholar 

  16. Haider S, Park S-Y (2009) J Membr Sci 328:90–96

    CAS  Google Scholar 

  17. Li JL, Chen XY, Xu DF, Pan K (2019) Ecotoxicol Environ Saf 170:716–721

    CAS  PubMed  Google Scholar 

  18. Cai N, Han C, Luo XG, Chen G, Dai Q, Yu FQ (2017) Macromol Mater Eng 302:10

    Google Scholar 

  19. Li K, Li C, Tian H, Yuan L, Xiang A, Wang C, Li J, Rajulu AV (2020) Macromol Mater Eng 305:8

    Google Scholar 

  20. Chen S, Li CP, Hou TT, Cai Y, Liang LM, Chen LM, Li MS (2019) React Funct Polym 145:11

    Google Scholar 

  21. Wu SJ, Li FT, Xu R, Wei SH, Wang HT (2010) Mater Lett 64:1295–1298

    CAS  Google Scholar 

  22. Jean JH, Lin SC (1999) J Mater Res 14:2922–2928

    CAS  Google Scholar 

  23. Chao HE, Yun YU, Xingfang HU, Larbot A (2003) J Eur Ceram Soc 23:1457–1464

    CAS  Google Scholar 

  24. Galizia P, Maizza G, Galassi C (2016) Process Appl Ceram 10:235–241

    CAS  Google Scholar 

  25. Hanaor DAH, Sorrell CC (2011) J Mater Sci 46:855–874

    CAS  Google Scholar 

  26. Ullah S, Hashmi M, Hussain N, Ullah A, Sarwar MN, Saito Y, Kim SH, Kim IS (2020) J Water Process Eng 33:101111

    Google Scholar 

  27. Truong YB, Choi J, Mardel J, Gao Y, Maisch S, Musameh M, Kyratzis IL (2017) Macromol Mater Eng 302:9

    Google Scholar 

  28. Huang H, Long M, Zhihan L, Yuejun L, Shuhong F, Yao J, Jianda X (2019) J Bioresour Bioprod 4:231–241

    CAS  Google Scholar 

  29. Esmaeili A, Beni AA (2014) J Hazard Mater 280:788–796

    CAS  PubMed  Google Scholar 

  30. Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) Eur Polym J 42:2013–2022

    CAS  Google Scholar 

  31. Mok CF, Ching YC, Muhamad F, Abu Osman NA, Hai ND, Hassan CRC (2020) J Polym Environ 28:775–793

    CAS  Google Scholar 

  32. Bavel E, Afkhami A, Madrakian T (2020) J Polym Environ 28:614–623

    CAS  Google Scholar 

  33. Kuo SW, Chang FC (2011) Prog Polym Sci 36:1649–1696

    CAS  Google Scholar 

  34. Phillips SH, Haddad TS, Tomczak SJ (2004) Curr Opin Solid State Mater Sci 8:21–29

    CAS  Google Scholar 

  35. Liu D, Yuan L, Xu H, Tian H, Xiang A (2019) Polym Compos 40:2768–2776

    CAS  Google Scholar 

  36. Li GZ, Wang LC, Ni HL, Pittman CU (2001) J Inorg Organomet Polym 11:123–154

    CAS  Google Scholar 

  37. Tanaka K, Chujo Y (2012) J Mater Chem 22:1733–1746

    CAS  Google Scholar 

  38. Tian H, Yuan L, Wang J, Wu H, Wang H, Xiang A, Ashok B, Rajulu AV (2019) J Hazard Mater 378:120751

    CAS  PubMed  Google Scholar 

  39. Habiba U, Afifi AM, Salleh A, Ang BC (2017) J Hazard Mater 322:182–194

    CAS  PubMed  Google Scholar 

  40. Kim U-J, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017) Carbohydr Polym 163:34–42

    CAS  PubMed  Google Scholar 

  41. Muller J, Prelot B, Zajac J, Monge S (2019) React Funct Polym 144:10

    Google Scholar 

  42. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Langmuir 28:5834–5844

    CAS  PubMed  Google Scholar 

  43. Shooto ND, Dikio CW, Wankasi D, Sikhwivhilu LM, Mtunzi FM, Dikio ED (2016) Nanoscale Res Lett 11:1–13

    CAS  Google Scholar 

  44. Lagergren S, Lagergren S, Lagergren S, Sven K (1898) Veternskapsakad Handlingar 24:1–39

    Google Scholar 

  45. Ho Y-S, McKay G (1999) Process Biochem 34:451–465

    CAS  Google Scholar 

  46. He K, Chen YC, Tang ZH, Hu YY (2016) Environ Sci Pollut Res 23:2778–2788

    CAS  Google Scholar 

  47. Bartczak P, Norman M, Klapiszewski Ł, Karwańska N, Kawalec M, Baczyńska M, Wysokowski M, Zdarta J, Ciesielczyk F, Jesionowski T (2018) Arab J Chem 11:1209–1222

    CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Professor Lina Zhang on her 80th birthday. This work was supported by Beijing Natural Science Foundation (2202014), School Level Cultivation Fund of Beijing Technology and Business University for Distinguished and Excellent Young Scholars (BTBUYP2020), and Funding of State Key Laboratory of Pulp and Paper Engineering, South China University of Technology (201801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huafeng Tian or Aimin Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Tian, H., Xiang, A. et al. Fabrication of PVA Nanofibers Grafted with Octaamino-POSS and their Application in Heavy Metal Adsorption. J Polym Environ 29, 1566–1575 (2021). https://doi.org/10.1007/s10924-020-01865-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01865-x

Keywords

Navigation