Skip to main content

Advertisement

Log in

Impact of Agricultural Weathering on Physicochemical Properties of Biodegradable Plastic Mulch Films: Comparison of Two Diverse Climates Over Four Successive Years

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable plastic mulch films (BDMs) are essential in the production of vegetable and specialty crops due to their promotion of increased crop yield and quality. Unlike conventional polyethylene (PE) mulches, BDMs can be tilled into the soil after crop harvest to undergo biodegradation, thereby leading to minimal environmental impact. Agricultural weathering impacts both the performance of BDMs during crop production as a barrier to weeds and biodegradability of BDMs in the soil. To better understand the relative importance of climatic factors, the change of physicochemical properties of BDMs during single-season, 3–4 month, field trials for vegetable production at two diverse climates (Knoxville, TN and Mount Vernon, WA) across four successive years (2015–2018) was evaluated. Mulch treatments consisted of four commercially available BDMs composed primarily of polybutylene co-adipate- co-terephthalate (PBAT) that differed in color and polymeric feedstock, a black experimental BDM prepared from polylactic acid/polyhydroxybutyrate (PLA/PHA) blend, and conventional PE mulch. Solar radiation, an important factor to degradation of mulches, was higher in WA than TN in most sampling years. Yet, degradation occurred more greatly for BDMs in TN, which is attributable to higher temperatures in TN. Mulch deterioration did not very extensively between years. Loss of mechanical properties and color was greater than chemical property changes. Differences in the extent of molecular weight decrease between years correlated significantly with solar radiation exposure at the two locations. A black-colored PBAT-based BDM was less susceptible to degradation than equivalent clear and white-on-black films, due to carbon black acting as a photostabilizer. The impact of weathering also differed between three commercially available PBAT-based films. The PLA/PHA mulch was more susceptible to degradation than PBAT-based BDMs, particularly in the warmer location, TN, partially due to a leaching out of PHA and lower-molecular weight polymer molecules. The extent of change for physicochemical properties of BDMs due to agricultural weathering is greatly affected by polymeric composition, and is greater in warmer climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available at https://doi.org/10.5061/dryad.0gb5mkkzh.

References

  1. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529. https://doi.org/10.1007/s13593-011-0068-3

    Article  CAS  Google Scholar 

  2. Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J et al (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705. https://doi.org/10.1016/j.scitotenv.2016.01.153

    Article  CAS  PubMed  Google Scholar 

  3. Chiellini E, Solaro R (1997) Biodegradable polymers and plastics. Springer, Boston

    Google Scholar 

  4. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150. https://doi.org/10.1007/s10924-007-0053-8

    Article  CAS  Google Scholar 

  5. Rochman CM (2018) Microplastics research—from sink to source. Science 360(6384):28. https://doi.org/10.1126/science.aar7734

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Sintim HY, Bary AI, Hayes DG, Wadsworth LC, Anunciado MB et al (2018) Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch. Sci Total Environ 635:1600–1608. https://doi.org/10.1016/j.scitotenv.2018.04.054

    Article  CAS  PubMed  Google Scholar 

  7. Bouwmeester H, Hollman PCH, Peters RJB (2015) Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49(15):8932–8947. https://doi.org/10.1021/acs.est.5b01090

    Article  CAS  PubMed  Google Scholar 

  8. Ng E-L, Huerta Lwanga E, Eldridge SM, Johnston P, Hu H-W, Geissen V et al (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

    Article  CAS  PubMed  Google Scholar 

  9. Zhu D, Chen Q-L, An X-L, Yang X-R, Christie P, Ke X et al (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem 116:302–310. https://doi.org/10.1016/j.soilbio.2017.10.027

    Article  CAS  Google Scholar 

  10. Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M et al (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220:523–531. https://doi.org/10.1016/j.envpol.2016.09.096

    Article  CAS  PubMed  Google Scholar 

  11. Hayes DG, Anunciado MB, DeBruyn JM, Bandopadhyay S, Schaeffer S, English M et al (2019) Biodegradable plastic mulch films for sustainable specialty crop production. In: Gutiérrez TJ (ed) Polymers for agri-food applications. Springer International Publishing, Basel, pp 183–213

    Chapter  Google Scholar 

  12. Kapanen A, Schettini E, Vox G, Itävaara M (2008) Performance and environmental impact of biodegradable films in agriculture: a field study on protected cultivation. J Polym Environ 16(2):109–122. https://doi.org/10.1007/s10924-008-0091-x

    Article  CAS  Google Scholar 

  13. European Standard ECfS. EN 17033 (2018) Plastics-Biodegradable mulch films for use in agriculture and horticultureRequirements and test methods. Brussels

  14. Hablot E, Dharmalingam S, Hayes DG, Wadsworth LC, Blazy C, Narayan R (2014) Effect of simulated weathering on physicochemical properties and inherent biodegradation of PLA/PHA Nonwoven Mulches. J Polym Environ 22(4):417–429. https://doi.org/10.1007/s10924-014-0697-0

    Article  CAS  Google Scholar 

  15. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic–aromatic copolyester biodegradable mulch films Part I: Field study. Chemosphere 71(5):942–953. https://doi.org/10.1016/j.chemosphere.2007.10.074

    Article  CAS  PubMed  Google Scholar 

  16. Li C, Moore-Kucera J, Miles C, Leonas K, Lee J, Corbin A et al (2014) Degradation of potentially biodegradable plastic mulch films at three diverse US locations. Agroecol Sustain Food Syst 38(8):861–889. https://doi.org/10.1080/21683565.2014.884515

    Article  Google Scholar 

  17. Moreno MM, González-Mora S, Villena J, Campos JA, Moreno C (2017) Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions. J Environ Manag 200:490–501. https://doi.org/10.1016/j.jenvman.2017.06.007

    Article  CAS  Google Scholar 

  18. Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 55(5):763–773. https://doi.org/10.1016/j.chemosphere.2003.11.038

    Article  CAS  PubMed  Google Scholar 

  19. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Hayes DG, Wadsworth LC, Sintim HY, Flury M, English M, Schaeffer S et al (2017) Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym Testing 62:454–467. https://doi.org/10.1016/j.polymertesting.2017.07.027

    Article  CAS  Google Scholar 

  21. Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  22. Brodhagen M, Peyron M, Miles C, Inglis DA (2015) Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99(3):1039–1056. https://doi.org/10.1007/s00253-014-6267-5

    Article  CAS  PubMed  Google Scholar 

  23. Rudnik E (2008) Chapter 4—thermal and thermooxidative degradation. In: Rudnik E (ed) Compostable polymer materials. Elsevier, Amsterdam, pp 72–85

    Chapter  Google Scholar 

  24. Lendlein A, Sisson A (2011) Handbook of biodegradable polymers: synthesis, characterization and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  25. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions. Chemosphere 71(9):1607–1616. https://doi.org/10.1016/j.chemosphere.2008.01.037

    Article  CAS  PubMed  Google Scholar 

  26. Andrade AL (2015) Plastics and environmental sustainability. Wiley, Hoboken, NJ

    Book  Google Scholar 

  27. DeVetter LW, Zhang H, Ghimire S, Watkinson S, Miles CA (2017) Plastic biodegradable mulches reduce weeds and promote crop growth in day-neutral strawberry in Western Washington. HortScience 52(12):1700–1706. https://doi.org/10.21273/HORTSCI12422-17

    Article  Google Scholar 

  28. Ghimire S, Wszelaki AL, Moore JC, Inglis DA, Miles C (2018) The use of biodegradable mulches in pie pumpkin crop production in two diverse climates. HortScience 53(3):288–294. https://doi.org/10.21273/HORTSCI12630-17

    Article  CAS  Google Scholar 

  29. Martín-Closas L, Costa J, Cirujeda A, Aibar J, Zaragoza C, Pardo A et al (2016) Above-soil and in-soil degradation of oxo- and bio-degradable mulches: a qualitative approach. Soil Res 54(2):225–236. https://doi.org/10.1071/SR15133

    Article  CAS  Google Scholar 

  30. Briassoulis D (2007) Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films. Polym Degrad Stab 92(6):1115–1132. https://doi.org/10.1016/j.polymdegradstab.2007.01.024

    Article  CAS  Google Scholar 

  31. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99(21):8857–8874. https://doi.org/10.1007/s00253-015-6879-4

    Article  CAS  PubMed  Google Scholar 

  32. Stloukal P, Verney V, Commereuc S, Rychly J, Matisova-Rychla L, Pis V et al (2012) Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere 88(10):1214–1219. https://doi.org/10.1016/j.chemosphere.2012.03.072

    Article  CAS  PubMed  Google Scholar 

  33. Moore JC, Wszelaki AL (2019) The use of biodegradable mulches in pepper production in the Southeastern United States. HortScience 54(6):1031–1038. https://doi.org/10.21273/HORTSCI13942-19

    Article  CAS  Google Scholar 

  34. Sintim HY, Bandopadhyay S, English ME, Bary AI, Debruyn JM, Schaeffer SM et al (2019) Impacts of biodegradable plastic mulches on soil health. Agr Ecosyst Environ 273:36–49. https://doi.org/10.1016/j.agee.2018.12.002

    Article  CAS  Google Scholar 

  35. ASTM International (2011) Standard test method for breaking force and elongation of textile fabrics (strip method): ASTM D5035. ASTM International, West Conshohocken, PA

    Google Scholar 

  36. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J Polym Sci Part A 40(23):4141–4157. https://doi.org/10.1002/pola.10501

    Article  CAS  Google Scholar 

  37. Kijchavengkul T, Auras R, Rubino M (2008) Measuring gel content of aromatic polyesters using FTIR spectrophotometry and DSC. Polym Testing 27(1):55–60. https://doi.org/10.1016/j.polymertesting.2007.08.007

    Article  CAS  Google Scholar 

  38. SAS Institute (2012) SAS/OR 93 user guide: mathematical programming examples. SAS Institute, Cary, NC

    Google Scholar 

  39. Briassoulis D, Babou E, Hiskakis M, Kyrikou I (2015) Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environ Sci Pollut Res 22(4):2584–2598. https://doi.org/10.1007/s11356-014-3464-9

    Article  CAS  Google Scholar 

  40. ASTM International (2012) Standard tables for the reference solar irradiences: direct normal and hemispherical on 37" tilted surface (ASTM G173). ASTM, International, West Conshohocken, PA, USA

    Google Scholar 

  41. Rudnik E, Briassoulis D (2011) Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. J Polym Environ 19(1):18–39. https://doi.org/10.1007/s10924-010-0243-7

    Article  CAS  Google Scholar 

  42. World Health Organization. Radiation (Vol. 100 D) (2012) A review of human carcinogens. World Health Organization: Lyon, France. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100D.pdf. Accessed 15 June 2020

  43. Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C (2006) Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stab 91(2):367–376. https://doi.org/10.1016/j.polymdegradstab.2005.04.035

    Article  CAS  Google Scholar 

  44. Bilck AP, Grossmann MVE, Yamashita F (2010) Biodegradable mulch films for strawberry production. Polym Testing 29(4):471–476. https://doi.org/10.1016/j.polymertesting.2010.02.007

    Article  CAS  Google Scholar 

  45. Touchaleaume F, Martin-Closas L, Angellier-Coussy H, Chevillard A, Cesar G, Gontard N et al (2016) Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 144:433–439. https://doi.org/10.1016/j.chemosphere.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  46. El-Shaikh A, Fouda T (2008) Effect of different mulching types on soil temperature and cucumber production under Libyan conditions. Misr J Ag Eng 25(1):160–175

    Google Scholar 

  47. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30(2):67–79. https://doi.org/10.1002/adv.20235

    Article  CAS  Google Scholar 

  48. Witkowski A, Stec AA, Hull TR (2016) Thermal decomposition of polymeric materials. In: Hurley MJ, Gottuk D, Hall JR, Harada K, Puchovsky M, Watts JM, et al. (eds) SFPE handbook of fire protection engineering, vol I, 5th edn. Springer, New York, pp 167–264

    Chapter  Google Scholar 

  49. Muthuraj R, Misra M, Mohanty AK (2015) Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J Appl Polym Sci 132(27):42189. https://doi.org/10.1002/app.42189

    Article  CAS  Google Scholar 

  50. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95(12):2641–2647. https://doi.org/10.1016/j.polymdegradstab.2010.07.018

    Article  CAS  Google Scholar 

  51. Scott G (2002) Degradation and stabilization of carbon-chain polymers. In: Scott G (ed) Degradable polymers: principles and applications. Springer, Netherlands, Dordrecht, pp 27–50

    Chapter  Google Scholar 

  52. Kijchavengkul T, Auras R (2008) Perspective compostability of polymers. Polym Int 57(6):793–804. https://doi.org/10.1002/pi.2420

    Article  CAS  Google Scholar 

  53. Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN (2016) Analysis of the time course of degradation for fully biobased nonwoven agricultural mulches in compost-enriched soil. Text Res J 86(13):1343–1355. https://doi.org/10.1177/0040517515612358

    Article  CAS  Google Scholar 

  54. Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN, DeBruyn JM, Lee J et al (2015) Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J Polym Environ 23(3):302–315. https://doi.org/10.1007/s10924-015-0716-9

    Article  CAS  Google Scholar 

  55. Bregg RK (2006) New frontiers in polymer research. Nova Science, New York

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the USDA Specialty Crops Research Initiative (Award 2014-51181-22382). We thank BioBag Americas (Dunedin, FL, USA), Organix Solutions (Maple Grove, MN, USA), and DuBois Agrinovation (Saint-Rémi, QC, Canada) for the kind donation of mulch films to our study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and were involved with the retrieval of mulch specimen from our ongoing field studies. Anunciado and Wadsworth performed the measurements of the physicochemical properties of the mulches, while Sintim, Flury, English, and Schaeffer collected and analyzed the environmental data at the two field sites. Anunciado performed statistical analysis of the physicochemical property data, while Anunciado, Hayes, and Wadsworth analyzed the same data. Anunciado and Hayes wrote the first draft of the manuscript and all authors commented on the previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Douglas G. Hayes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anunciado, M.B., Hayes, D.G., Wadsworth, L.C. et al. Impact of Agricultural Weathering on Physicochemical Properties of Biodegradable Plastic Mulch Films: Comparison of Two Diverse Climates Over Four Successive Years. J Polym Environ 29, 1–16 (2021). https://doi.org/10.1007/s10924-020-01853-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01853-1

Keywords

Navigation