Skip to main content
Log in

Adsorption/Reduction Behaviors of Modified Cellulose Aerogels for the Removal of Low Content of Cr(VI)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Removal of low content of Cr(VI) from water is a critical challenge for water environment protection. Herein, an acrylamide-thiosemicarbazide cellulose aerogels (ATC) was designed by dissolving, grafting and freeze-drying to introduce thiosemicarbazide onto acrylamide-cellulose aerogels (AMC) via Schiff based reaction. The resultant ATC was further employed as an efficient adsorbent to remove low content of Cr(VI) from wastewater by adsorption and reduction. The SEM, FT-IR, and BET results showed that the ATC was composed of well-developed pore structure and owned functional groups such as –NH2, C–S and C=S groups. Experimental results indicated that ATC exhibited excellent removal efficiency for 99% under low initial concentration (0.1–10 mg/L). The adsorption isotherms demonstrated ATC adsorbent according to a monolayer adsorption behavior following the Langmuir model with a calculated maximum adsorption capacity of 83.40 mg/g at pH 3, and the adsorption kinetics well obeyed the pseudo-first-order kinetic model. Importantly, the maximum effluent concentration of Cr(VI) was lower than 0.045 mg/L, meeting the standard of WHO (50 μg/L). Furthermore, the main removal mechanisms involved the synergistic effect of electrostatic interactions, reduction and chelation between the positively charged functional groups of adsorbent and the anionic Cr(VI) ions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Shu ZP, Liu LH, Qiu GH, Xiong Y, Zhang MZ, Tan WF, Liu CS, Wu F (2019) ACS Earth Space Chem 3(5):718–727

    CAS  Google Scholar 

  2. Wang L, Zhang XS, Qian S, Zhan Y, Chen SJ (2012) J Soc Leather Technol Chem 96:152–156

    CAS  Google Scholar 

  3. Zendehdel R, Fazli Z, Rezazadeh Azari M (2019) Work 63:355–360

    PubMed  Google Scholar 

  4. Li LL, Fan LL, Sun M, Qiu HM, Li XJ, Duan HM, Luo CN (2013) Colloid Surf B 107:76–83

    CAS  Google Scholar 

  5. Almughamisi MS, Khan ZA, Alshitari W, Elwakeel KZ (2020) J Polym Environ 28:47–60

    CAS  Google Scholar 

  6. Dong X, Ma LQ, Li Y (2011) J Hazard Mater 1–3:909–915

    Google Scholar 

  7. Ren G, Wang X, Huang P, Zhong B, Zhang Z, Yang L, Yang X (2017) Sci Total Environ 607–608:900–910

    PubMed  Google Scholar 

  8. Korak JA, Huggins R, Arias-Paic M (2017) Water Res 118:141–151

    CAS  PubMed  Google Scholar 

  9. Wang XD, Xu J, Liu J, Liu J, Xia F, Wang CC, Dahlgren RA, Liu W (2019) Sci Total Environ 700:134414

    PubMed  Google Scholar 

  10. Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Water Air Soil Pollut 200:59–77

    CAS  Google Scholar 

  11. Park D, Yun YS, Park JM (2006) J Hazard Mater 137(2):1254–1257

    CAS  PubMed  Google Scholar 

  12. Li PG, Fu T, Gao XY, Zhu WJ, Han CY, Liu NS, He SF, Luo YM, Ma WH (2019) J Chem Eng Data 64:2686–2696

    CAS  Google Scholar 

  13. Wang X, Liu W, Fu H, Yi XH, Wang P, Zhao C, Wang CC, Zheng W (2019) Environ Pollut 249:502–511

    CAS  PubMed  Google Scholar 

  14. Wang WH, Hu BB, Wang C, Liang ZJ, Cui FY, Zhao ZW, Yang C (2019) Chem Eng J 122:633

    Google Scholar 

  15. Xu JW, Yin YG, Tan ZQ, Wang BW, Guo XR, Li X, Liu JF (2019) J Environ Sci-China 78:109–117

    PubMed  Google Scholar 

  16. Ren J, Zhang G, Wang D, Cai D, Wu Z (2019) Bioresour Technol 291:121856

    CAS  PubMed  Google Scholar 

  17. Vo AT, Van Nguyen P, Ouakouak A, Nieva A, Doma BT, Tran HN, Chao H (2019) Water 6:1164

    Google Scholar 

  18. Montoya-Suarez S, Colpas-Castillo F, Meza-Fuentes E, Rodríguez-Ruiz J, Fernandez-Maestre R (2016) Water Sci Technol 1:21–27

    Google Scholar 

  19. Lu YS, Sun QF, Yang DJ, She XL, Yao XD, Zhu GS, Liu YX, Zhao HJ, Li J (2012) J Mater Chem A 27:13548–13557

    Google Scholar 

  20. Kaya M, Tabak A (2020) J Polym Environ 28:323–330

    CAS  Google Scholar 

  21. Wang LY, Xu H, Gao JK, Yao JM, Zhang QC (2019) Coordin Chem Rev 398:213016

    Google Scholar 

  22. Cui S, Wang X, Zhang X, Xia W, Tang XL, Lin BL, Wu Q, Zhang X, Shen XD (2018) Cellulose 1:735–751

    Google Scholar 

  23. Ren WJ, Gao J, Lei C, Xie YB, Cai YR, Ni QQ, Yao JM (2018) Chem Eng J 349:766–774

    CAS  Google Scholar 

  24. Budtova T (2019) Cellulose 26:81–121

    CAS  Google Scholar 

  25. Guo DM, An QD, Xiao ZY, Zhai SR, Shi Z (2017) RSC Adv 7:54039–54052

    CAS  Google Scholar 

  26. Liu Y, Shi TH, Zhang T, Yuan DS, Peng YX, Qiu FX (2019) Cellulose 9:5381–5394

    Google Scholar 

  27. Srasri K, Thongroj M, Chaijiraaree P (2018) Int J Biol Maromol 119:662–668

    CAS  Google Scholar 

  28. Tian CH, She JR, Wu YQ, Luo S, Wu QL, Qing Y (2018) Polym Compos 12:4442–4451

    Google Scholar 

  29. Li J, Zheng L, Liu HB (2017) J Porous Mater 24(6):1575–1580

    CAS  Google Scholar 

  30. Lin G, Wang S, Zhang L, Hu T, Peng J, Cheng S, Fu L (2018) J Mol Liq 258:235–243

    CAS  Google Scholar 

  31. Cui JJ, Niu CG, Wang XY, Zeng GM (2017) J Appl Polym Sci 134:44528

    Google Scholar 

  32. Lin G, Wang SX, Zhang LB, Hu T, Peng JH, Cheng S, Fu LK (2017) Polym Basel 9:568

    Google Scholar 

  33. Yang GF, Zhang YQ, Liu YF (2019) Bioresources 14(2):3668–3687

    CAS  Google Scholar 

  34. Bo SG, Ren WJ, Lei C, Xie YB, Cai YR, Wang SL, Gao JK, Ni QQ, Yao JM (2018) J Solid State Chem 262:135–141

    CAS  Google Scholar 

  35. Ren HW, Wang QH, Guo SH, Zhao DS, Chen CM (2017) Eur Polym J 92:204–212

    CAS  Google Scholar 

  36. Qiu B, Xu CX, Sun DZ, Yi H, Guo J, Zhang X, Qu HL, Guerrero M, Wang XF, Noel N, Luo ZP, Guo ZH, Wei SY (2014) ACS Sustain Chem Eng 2:2070–2080

    CAS  Google Scholar 

  37. Lin YC, Wang SL (2012) Chem Eng J 171–172:479–485

    Google Scholar 

  38. Monier M, Kenawy IM, Hashem MA (2014) Carbohydr Polym 106:49–59

    CAS  PubMed  Google Scholar 

  39. Guo L, Liu C, Guo Z, Sun L, Liu J (2012) J Disper Sci Technol 33(5):690–696

    CAS  Google Scholar 

  40. Liu DT, Xia KF, Cai WH, Yang RD, Wang LQ, Wang B (2012) Carbohydr Polym 87:1058–1064

    CAS  Google Scholar 

  41. Sharma M, Mukesh C, Mondal D, Prasad K (2013) RSC Adv 3:18149–18155

    CAS  Google Scholar 

  42. Zhang Q, Benoit M, De Oliveira VK, Barrault J, Jérôme F (2012) Chem A 18:1043–1046

    CAS  Google Scholar 

  43. Chen T, Zhang Y, Wang H, Lu W, Zhou Z, Zhang Y, Ren L (2014) Bioresour Technol 164:47–54

    CAS  PubMed  Google Scholar 

  44. Shan W, Fang D, Shuang Y, Kong Y, Zhao Z, Xing Z, Biswas B, Xiong Y (2012) J Chem Eng Data 57:290–297

    CAS  Google Scholar 

  45. Aregay GG, Jawad A, Du YS, Shahzad A, Chen ZQ (2019) J Mol Liq 294:111532

    CAS  Google Scholar 

  46. Zheng MQ, Zhao XD, Wang KK, She YB, Gao ZQ (2019) Ind Eng Chem Res 58:23330–23337

    CAS  Google Scholar 

  47. Wang H, Liu YG, Zeng GM, Hu XJ, Hu X, Li TT, Li HY, Wang YQ, Jiang LH (2014) Carbohydr Polym 113:166–173

    CAS  PubMed  Google Scholar 

  48. Park D, Yun YS, Jo JH, Park JM (2005) Water Res 39:533–540

    CAS  PubMed  Google Scholar 

  49. Wang Y, Zhang N, Chen D, Ma D, Liu G, Zou X, Chen Y, Shu R, Song Q, Lv W (2019) Sci Total Environ 682:118–127

    CAS  PubMed  Google Scholar 

  50. Diao Z, Du J, Jiang D, Kong L, Huo W, Liu C, Wu Q, Xu X (2018) Sci Total Environ 642:505–515

    CAS  PubMed  Google Scholar 

  51. Xiong Y, Wan L, Xuan J, Wang Y, Xing Z, Shan W, Lou Z (2016) J Hazard Mater 301:277–285

    CAS  PubMed  Google Scholar 

  52. Wei LL, Gu R, Lee JM (2015) Appl Catal B 176–177:325–330

    Google Scholar 

  53. Bhaumik M, Agarwal S, Gupta VK, Maity A (2016) J Colloid Interfaces Sci 470:257–267

    CAS  Google Scholar 

  54. And SD, Bai RB (2003) Environ Sci Technol 37:5799–5805

    Google Scholar 

  55. Deng S, Ting YP (2005) Environ Sci Technol 39:8490–8496

    CAS  PubMed  Google Scholar 

  56. Gao X, Zhang Y, Zhao Y (2017) Carbohydr Polym 159:108–115

    CAS  PubMed  Google Scholar 

  57. Won SW, Kotte P, Wei W, Lim A, Yun YS (2014) Bioresour Technol 160:203–212

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was financially supported by Natural Science Foundation of China (No. 21577018) and the Open Foundation of the Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants (No. PY19003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifan Liu or Minghua Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, R., Li, Q., Liu, J. et al. Adsorption/Reduction Behaviors of Modified Cellulose Aerogels for the Removal of Low Content of Cr(VI). J Polym Environ 28, 2199–2210 (2020). https://doi.org/10.1007/s10924-020-01761-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01761-4

Keywords

Navigation