Skip to main content

Advertisement

Log in

Effect of Feeding Strategies and Inoculums Applied on Two-Stage Biosynthesis of Polyhydroxyalkanoates from Palm Oil Mill Effluent

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoate (PHA) is a biodegradable polyoxoester, which is synthesized as carbon and energy storage by various bacteria from different substrates used. Palm oil mill effluent (POME) has been redefined as a secondary raw material for PHA production. POME is bioconverted to volatile fatty acids (VFA) via anaerobic acidogenic fermentation, and VFA is utilized to synthesis PHA aerobically. A pH of 7.0 is the optimal condition to produce the highest VFA concentration with the lowest strength of formic acid. A mixed culture of aerobic activated sludge facilitates higher PHA production yield than a pure Bacillus megaterium culture. The feast–famine (FF) feeding strategy can also generate higher PHA yield compared with batch operation. Hence, the highest PHA yield of 0.2559 ± 0.0896 g PHA/g TVFA from POME is achieved by the cultivation of aerobic activated sludge under FF regime. The PHA production can be lowered by presence of formic acid and sludge biomass residue in the fermented POME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MPOB (2016) Production of crude palm oil for the month of December 2015

  2. Setiadi T, Trianto A, Aznury M, Pancoro A (2015) Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors. Water Sci Technol 72:1889–1895. https://doi.org/10.2166/wst.2015.391

    Article  CAS  PubMed  Google Scholar 

  3. Ibrahim AH, Dahlan I, Adlan MN, Fereidonian Dashti A (2013) Characterization of palm oil mill effluent: a comparative study. Casp J Appl Sci Res 2:262–268

    Google Scholar 

  4. Teow YH, Ghani MSH, Mohammad AW (2018) Physical and chemical cleaning for nanofiltration/reverse osmosis (NF/RO) membranes in treatment of tertiary palm oil mill effluent (POME) for water reclamation. J Kejuruter 1:51–58

    Google Scholar 

  5. Zubairi SI, Mantalaris A, Bismarck A, Aizad S (2016) Polyhydroxyalkanoates (PHAs) for tissue engineering applications: biotransformation of palm oil mill effluent (POME) to value-added polymers. J Teknol 78(1):13–29

    Google Scholar 

  6. Madaki YS, Lau S (2013) Palm oil effluent (POME) from Malaysia palm oil mills: waste or resource. Int J Sci Environ Technol 2:1138–1155

    Google Scholar 

  7. Hamdan WNAWM, Teow YH, Mohammad AW (2018) Sustainable approach in palm oil industry-green synthesis of palm oil mill effluent based graphene sand composite (P-GSC) for aerobic palm oil mill effluent treatment. J Kejuruter 1:11–20

    Google Scholar 

  8. Mumtaz T, Yahaya NA, Abd-Aziz S et al (2010) Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent-a Malaysian perspective. J Clean Prod 18:1393–1402. https://doi.org/10.1016/j.jclepro.2010.05.016

    Article  CAS  Google Scholar 

  9. Salihu A, Alam MZ (2012) Palm oil mill effluent: a waste or a raw material? J Appl Sci Res 8:466–473

    CAS  Google Scholar 

  10. Wu TY, Mohammad AW, Jahim JM, Anuar N (2009) A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME. Biotechnol Adv 27:40–52. https://doi.org/10.1016/j.biotechadv.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  11. Hassan MA, Nawata O, Shirai Y et al (2002) A proposal for zero emission from palm oil industry incorporating with the prodcution of polyhydroxyalkanoates from palm oil mill effluent. J Chem Eng Jpn 35:9–14

    Article  CAS  Google Scholar 

  12. Ujang Z, Salmiati SMR (2010) Microbial biopolymerization production from palm oil mill effluent (POME). Biopolymers 148:474–494

    Google Scholar 

  13. Maaroff RM, Md Jahim J, Azahar AM et al (2019) Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. Int J Hydrogen Energy 44:3395–3406. https://doi.org/10.1016/j.ijhydene.2018.06.013

    Article  CAS  Google Scholar 

  14. Mahmod SS, Jahim JM, Abdul PM (2017) Pretreatment conditions of palm oil mill effluent (POME) for thermophilic biohydrogen production by mixed culture. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2017.07.178

    Article  Google Scholar 

  15. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  Google Scholar 

  16. Park SJ, Il CJ, Lee SY (2005) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme Microb Technol 36:579–588. https://doi.org/10.1016/j.enzmictec.2004.12.005

    Article  CAS  Google Scholar 

  17. Geethu M, Vrundha R, Raja S et al (2019) Improvement of the production and characterisation of polyhydroxyalkanoate by Bacillus endophyticus using inexpensive carbon feedstock. J Polym Environ 27:917–928. https://doi.org/10.1007/s10924-019-01397-z

    Article  CAS  Google Scholar 

  18. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  19. Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009. https://doi.org/10.1016/j.biortech.2009.03.088

    Article  CAS  PubMed  Google Scholar 

  20. Kim YB, Lenz RW (2001) Polyesters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79. https://doi.org/10.1007/3-540-40021-4_2

    Article  CAS  PubMed  Google Scholar 

  21. Laycock B, Halley P, Pratt S et al (2014) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 39:397–442

    Article  Google Scholar 

  22. Chen YJ, Tsai PC, Hsu CH, Lee CY (2014) Critical residues of class II PHA synthase for expanding the substrate specificity and enhancing the biosynthesis of polyhydroxyalkanoate. Enzyme Microb Technol 56:60–66. https://doi.org/10.1016/j.enzmictec.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  23. Botta L, Mistretta MC, Palermo S et al (2015) Characterization and processability of blends of polylactide acid with a new biodegradable medium-chain-length polyhydroxyalkanoate. J Polym Environ 23:478–486. https://doi.org/10.1007/s10924-015-0729-4

    Article  CAS  Google Scholar 

  24. Anjum A, Zuber M, Zia KM et al (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  CAS  PubMed  Google Scholar 

  25. Kovalcik A, Obruca S, Marova I (2018) Valorization of spent coffee grounds: a review. Food Bioprod Process 110:104–119. https://doi.org/10.1016/j.fbp.2018.05.002

    Article  CAS  Google Scholar 

  26. Verlinden RAJ, Hill DJ, Kenward MA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

    Article  CAS  PubMed  Google Scholar 

  27. Das S, Majumder A, Shukla V et al (2018) Biosynthesis of poly(3-hydroxybutyrate) from Cheese Whey by Bacillus megaterium NCIM 5472. J Polym Environ 26:4176–4187. https://doi.org/10.1007/s10924-018-1288-2

    Article  CAS  Google Scholar 

  28. Wong AL, Chua H, Lo WH, Yu PHF (2000) Synthesis of bioplastics from food industry wastes with activated sludge biomass. Water Sci Technol 41:55–59

    Article  CAS  Google Scholar 

  29. Salmiati SMR, Ujang Z et al (2014) Polyhydroxyalkanoates (PHAs) production from complex polymer organic waste using anaerobic and aerobic sequence batch reactor. J Biochem Microbiol Biotechnol 2:61–66

    Google Scholar 

  30. Aznury M, Trianto A, Pancoro A, Setiadi T (2013) Acidogenic fermentation of palm oil mill efluent (POME) on volatile fatty acids production as precursor. In: The 13th international conference on QIR (quality in research), pp 336–342

  31. Prieto A, Escapa IF, Martínez V et al (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol 18:341–357. https://doi.org/10.1111/1462-2920.12760

    Article  CAS  PubMed  Google Scholar 

  32. Md Din MF, Ujang Z, van Loosdrecht M et al (2006) Polyhydroxyalkanoates (PHAs) production from aerobic-mixed cultures. Malays J Civ Eng 18:109–128

    Google Scholar 

  33. Bengtsson S, Werker A, Christensson M, Welander T (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99:509–516. https://doi.org/10.1016/j.biortech.2007.01.020

    Article  CAS  PubMed  Google Scholar 

  34. Khumwanich P, Napathorn SC, Suwannasilp BB (2014) Polyhydroxyalkanoate production with a feast/famine feeding regime using sludge from wastewater treatment plants of the food and beverage industry. J Biobased Mater Bioenergy 8:641–647. https://doi.org/10.1166/jbmb.2014.1476

    Article  CAS  Google Scholar 

  35. Fradinho JC, Reis MAM, Oehmen A (2016) Beyond feast and famine: selecting a PHA accumulating photosynthetic mixed culture in a permanent feast regime. Water Res 105:421–428. https://doi.org/10.1016/j.watres.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  36. Gobi K, Vadivelu VM (2014) Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules. Bioresour Technol 161:441–445. https://doi.org/10.1016/j.biortech.2014.03.104

    Article  CAS  PubMed  Google Scholar 

  37. Suarez-Mendez C, Sousa A, Heijnen J, Wahl A (2014) Fast “feast/famine” cycles for studying microbial physiology under dynamic conditions: a case study with Saccharomyces cerevisiae. Metabolites 4:347–372. https://doi.org/10.3390/metabo4020347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moita R, Lemos PC (2012) Biopolymers production from mixed cultures and pyrolysis by-products. J Biotechnol 157:578–583. https://doi.org/10.1016/j.jbiotec.2011.09.021

    Article  CAS  PubMed  Google Scholar 

  39. Tan KM, Liew WL, Muda K, Kassim MA (2015) Microbiological characteristics of palm oil mill effluent. ICCBES-855 186-200

  40. Md Din MF, Ponraj M, van Loosdrecht M et al (2014) Utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int J Environ Sci Technol 11:671–684. https://doi.org/10.1007/s13762-013-0253-9

    Article  CAS  Google Scholar 

  41. Hassan MA, Shirai Y, Kusubayashi N et al (1997) The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J Ferment Bioeng 83:485–488

    Article  CAS  Google Scholar 

  42. Gomaa EZ (2014) Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz Arch Biol Technol 57:145–154. https://doi.org/10.1590/S1516-89132014000100020

    Article  CAS  Google Scholar 

  43. Hahn SK, Chang YK, Kim BS, Chang HN (1994) Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnol Bioeng 44:256–261. https://doi.org/10.1002/bit.260440215

    Article  CAS  PubMed  Google Scholar 

  44. Abdul PM, Jahim JM, Harun S et al (2016) Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresour Technol 211:200–208. https://doi.org/10.1016/j.biortech.2016.02.135

    Article  CAS  PubMed  Google Scholar 

  45. Hamieh A, Olama Z, Holail H (2013) Microbial production of polyhydroxybutyrate, a biodegradable plastic using agro-industrial waste. Glob Adv Res J Microbiol 2:54–64

    Google Scholar 

  46. Yu HQ, Fang HHP (2003) Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: influence of pH and temperature. Water Res 37:55–66. https://doi.org/10.1016/S0043-1354(02)00256-7

    Article  CAS  PubMed  Google Scholar 

  47. Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2013) Influence of temperature on the bioconversion of palm oil mill effluent into volatile fatty acids as precursor to the production of polyhydroxyalkanoates. J Chem Technol Biotechnol 89:1038–1043. https://doi.org/10.1002/jctb.4197

    Article  CAS  Google Scholar 

  48. Jankowska E, Chwiałkowska J, Stodolny M, Oleskowicz-Popiel P (2015) Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour Technol 190:274–280. https://doi.org/10.1016/j.biortech.2015.04.096

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Jiang J, Wang J (2013) Effect of pH value on VFA concentration and composition during anaerobic fermentation of kitchen waste. China Environ Sci 33:680–684

    Google Scholar 

  50. Hassan MA, Shirai Y, Kusubayashi N et al (1996) Effect of organic acid profiles during anaerobic treatment of palm oil mill effluent on the production of polyhydroxyalkanoates by Rhodobacter sphaeroides. J Ferment Bioeng 82:151–156. https://doi.org/10.1016/0922-338X(96)85038-0

    Article  CAS  Google Scholar 

  51. Lemos PC, Serafim LS, Reis MAM (2006) Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122:226–238. https://doi.org/10.1016/j.jbiotec.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  52. Albuquerque MGE, Eiroa M, Torres C et al (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421. https://doi.org/10.1016/j.jbiotec.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  53. Salmiati UZ, Salim MR et al (2007) Intracellular biopolymer productions using mixed microbial cultures from fermented POME. Water Sci Technol 56:179–185. https://doi.org/10.2166/wst.2007.687

    Article  CAS  Google Scholar 

  54. Ramezani M, Amoozegar MA, Ventosa A (2015) Screening and comparative assay of poly-hydroxyalkanoates produced by bacteria isolated from the Gavkhooni Wetland in Iran and evaluation of poly-β-hydroxybutyrate production by halotolerant bacterium Oceanimonas sp. GK1. Ann Microbiol 65:517–526. https://doi.org/10.1007/s13213-014-0887-y

    Article  CAS  Google Scholar 

  55. Kumar M, Singhal A, Verma PK, Thakur IS (2017) Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB ACS Omega 2:9156–9163. https://doi.org/10.1021/acsomega.7b01615

    Article  CAS  PubMed  Google Scholar 

  56. Okwuobi PN, Ogunjobi AA (2013) Production and analysis of polyhydroxyalkanoate (PHA) by Bacillus megaterium using pure carbon substrates. World Appl Sci J 28:1336–1340. https://doi.org/10.5829/idosi.wasj.2013.28.09.2531

    Article  CAS  Google Scholar 

  57. Das M, Grover A (2018) Fermentation optimization and mathematical modeling of glycerol-based microbial poly(3-hydroxybutyrate) production. Process Biochem 71:1–11. https://doi.org/10.1016/j.procbio.2018.05.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Appreciation is also extended to the Makmal Berpusat i-CRIM of UKM for providing the fabrication and measurement facilities needed for this research.

Funding

This research was funded by the Government of Malaysia and UKM (Grant GUP-2017-102).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [MFT, DN]; formal analysis: [MFT]; funding acquisition: [DN]; methodology: [MFT, PMA]; project administration: [MFT]; resources: [MFT, DN, PMA]; visualization: [MFT]; Writing—original draft preparation: [MFT]; Writing—review and editing: [MFT, DN, PMA].

Corresponding author

Correspondence to Darman Nordin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiang, M.F., Nordin, D. & Abdul, P.M. Effect of Feeding Strategies and Inoculums Applied on Two-Stage Biosynthesis of Polyhydroxyalkanoates from Palm Oil Mill Effluent. J Polym Environ 28, 1934–1943 (2020). https://doi.org/10.1007/s10924-020-01743-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01743-6

Keywords

Navigation