Skip to main content

Characterization of Rigid Composite Polyester Foams Derived from Biomass

Abstract

The building industry is under increasing pressure to develop and use sustainable approaches and materials. Replacing products from crude oil by co-products from bio-refinery processing can have both positive economic and environmental features. Crude glycerol, the main co-product from biodiesel production, is produced in large quantity, but have few applications. Crude glycerol has potential to substitute pure glycerol in some of its applications, as for the synthesis of polymers. Polymeric foams are materials used in building industry for insulation purpose but are mainly petroleum-based. Cellulose filaments are materials derived from biomass which could be used as fillers to modify the properties of a polymer. In this study, rigid composite polyester foams from crude glycerol with cellulose filaments has been developed to be used as thermal insulators for building industry. The samples have been characterized at different polymerization stages and at different conditioning cycles. FTIR analysis confirmed that the final polymerization created new ester bonds between glycerol and citric acid, which it was supported by the increase of Tg. The compressive strength values were higher after final polymerization but were affected negatively at high humidity. The use of crude glycerol resulted to a more homogenous pore structure and higher porosity than pure glycerol. Again, thermal conductivity and stability tests showed that crude glycerol foams were more reliable than pure glycerol ones for their thermal properties. Then, the crude glycerol foams absorbed more water and had lower density than pure glycerol specimens. At last, the adding of cellulose filaments enhanced the stability of volumetric swelling by comparison with glass fibers. Overall, from the specific conditions and methods used in this study the crude glycerol could replace pure glycerol for development of polymer, and the cellulose filaments were better fillers than common ones, such as glass fibers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Natural Resources Canada, National Energy Use Database (NEUD) Publications (2018) Energy efficiency trends in Canada 1990–2015. Canada

  2. Lessard Y, Anand C, Blanchet P, Frenette C, Amor B (2018) J Ind Ecol 22:1105

    Google Scholar 

  3. Hatti-Kaul R, Tornvall U, Gustafsson L, Borjesson P (2007) Trends Biotechnol 25:119

    CAS  PubMed  Google Scholar 

  4. Huang C, Shi X, Wang C, Guo L, Dong M, Hu G, Lin J, Ding T, Guo Z (2019) Int J Biol Macromol 140:1167

    CAS  PubMed  Google Scholar 

  5. Wang W, Hao X, Chen S, Yang Z, Wang C, Yan R, Zhang X, Liu H, Shao Q, Guo Z (2018) Polymer 158:223

    CAS  Google Scholar 

  6. Zhang S, Liu H, Yang S, Shi X, Zhang D, Shan C, Mi L, Liu C, Shen C, Guo Z (2019) ACS Appl Mater Interfaces 11:10922

    CAS  PubMed  Google Scholar 

  7. Meier MAR, Metzger JO, Schubert US (2007) Chem Soc Rev 36:1788

    CAS  PubMed  Google Scholar 

  8. Tyagi OS, Atray N, Kumar B, Datta A (2010) Mapan-J Metrol Soc I(25):197

    Google Scholar 

  9. Jang MG, Kim DK, Park SC, Lee JS, Kim SW (2012) Renew Energy 42:99

    CAS  Google Scholar 

  10. Guo A, Demydov D, Zhang W, Petrovic ZS (2002) J Polym Environ 10:49

    CAS  Google Scholar 

  11. Zini E, Scandola M (2011) Polym Compos 32:1905

    CAS  Google Scholar 

  12. Li C, Luo X, Li T, Tong X, Li Y (2014) Polymer 55:6529

    CAS  Google Scholar 

  13. Yang F, Hanna MA, Sun R (2012) Biotechnol Biofuels 5:13

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guerrero P, Arana P, O’Grady MN, Kerry JP, De la Caba K (2015) J Clean Prod 100:179

    Google Scholar 

  15. Alberts AH, Rothenberg G (2015) Preparing foamed polymer. United States Patent Application Publication, US 2015 0005403 A1

  16. Mati-Baouche N, De Baynast H, Lebert A, Sun S, Lopez-Mingo CJS, Leclaire P, Michaud P (2014) Ind Crops Prod 58:244

    CAS  Google Scholar 

  17. Basso MC, Li X, Fierro V, Pizzi A, Giovando S, Celzard A (2011) Adv Mater Lett 2:378

    CAS  Google Scholar 

  18. Lagel M-C, de Yuso AM, Pizzi A, Celzard A, Fierro V (2014) Mater Tech 102:104

    Google Scholar 

  19. Valerio O, Horvath T, Pond C, Misra M, Mohanty A (2015) Ind Crops Prod 78:141

    CAS  Google Scholar 

  20. Fan H, Tekeei A, Suppes GJ, Hsieh F-H (2012) Int J Polym Sci vol 2012. Article ID 474803

  21. Kim MW, Kwon SH, Park H, Kim BK (2017) EXPRESS Polym Lett 11:374

    CAS  Google Scholar 

  22. Kumar M, Kaur R (2017) e-Polymers 17:517

    CAS  Google Scholar 

  23. Widya T, Macosko CW (2005) J Macromol Sci B 44:897

    CAS  Google Scholar 

  24. Obradovic J, Voutilainen M, Virtanen P, Lassila L, Fardim P (2017) Materials 10:619

    PubMed Central  Google Scholar 

  25. Diallo AK, Jahier C, Drolet R, Tolnai B, Montplaisir D (2019) Polym Compos 40:16

    CAS  Google Scholar 

  26. Alberts AH, Rothenberg G (2017) Faraday Discuss 202:111

    CAS  PubMed  Google Scholar 

  27. Essoua Essoua GG, Blanchet P, Landry V, Beauregard R (2016) BioRes 11:3049

    Google Scholar 

  28. Korjenic A, Zach J, Hroudovà J (2016) Energy Build 116:45

    Google Scholar 

  29. Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Carbohydr Polym 69:748

    CAS  Google Scholar 

  30. Bodirlau R, Teaca CA (2009) Rom J Phys 54:93

    CAS  Google Scholar 

  31. Halpern JM, Urbanski R, Weinstock AK, Iwig DF, Mathers RT, Von Recum HA (2013) J Biomed Mater Res Part A 102:467

    Google Scholar 

  32. Paramarta A, Pan X, Webster DC (2013) RadTech Rep 1:26

    Google Scholar 

  33. Carbas RJC, Marques EAS, da Silva LFM, Lopes AM (2014) J Adhes 90(1):104

    CAS  Google Scholar 

  34. Yousefi A, Lafleur PG, Gauvin R (1997) Polym Compos 18:157

    CAS  Google Scholar 

  35. Członka S, Strąkowska A, Strzelec K, Adamus-Włodarczyk A, Kairytė A, Vaitkus S (2019) Polymers 11:336

    PubMed Central  Google Scholar 

  36. Liu L, Tian M, Zhang W, Zhang L, Mark JE (2007) Polymer 48:3201

    CAS  Google Scholar 

  37. Sung G, Kim JH (2017) Compos Sci Technol 146:147

    CAS  Google Scholar 

  38. Segovia F, Auclair N, Blanchet P, Essoua Essoua GG, Thermo-mechanical properties of a wood fiber insulation board using a bio-based adhesive as a binder. Manuscript submitted for publication

  39. Zhang S, Xiang A, Tian H, Varada Rajulu A (2018) J Polym Environ 26:15

    CAS  Google Scholar 

  40. Gu R, Khazabi M, Sain M (2011) BioRes 6:3775

    CAS  Google Scholar 

  41. Zhang H, Fang W-Z, Li Y-M, Tao W-Q (2017) Appl Therm Eng 115:528

    CAS  Google Scholar 

  42. Özveren N, Özgür Seydibeyoğlu M (2017) Int J Polym Sci vol 2017. Article ID 6310198

  43. Ahern A, Verbist G, Weaire D, Phelan R, Fleurent H (2005) Colloid Surf A 263:275

    CAS  Google Scholar 

  44. Huang X, Qi J, De Hoop C, Xie J, Chen Y (2017) BioRes 12:8160

    CAS  Google Scholar 

  45. Berube M-A, Schorr D, Ball RJ, Landry V, Blanchet P (2018) J Polym Environ 26:970

    CAS  Google Scholar 

  46. Ugarte L, Saralegi A, Fernández R, Martín L, Corcuera MA, Eceiza A (2014) Ind Crops Prod 62:545

    CAS  Google Scholar 

  47. Rezgar H, Taher A, Ali D, Richard EL (2019) Therm Sci 28:745

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Natural Sciences and Engineering Research Council of Canada for the financial support through its IRC and CRD Programs (IRCPJ 461745-18 and RDCPJ 524504-18) as well as the industrial partners of the NSERC industrial chair on eco-responsible wood construction (CIRCERB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Auclair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Auclair, N., Blanchet, P. Characterization of Rigid Composite Polyester Foams Derived from Biomass. J Polym Environ 28, 1601–1613 (2020). https://doi.org/10.1007/s10924-020-01712-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01712-z

Keywords

  • Bio-based composite foam
  • Cellulose filaments (CF)
  • Thermal insulation
  • Crude glycerol
  • Pure glycerol