Skip to main content
Log in

Mechanical, Thermal and Antimicrobial Properties of Chitosan-Based-Nanocomposite with Potential Applications for Food Packaging

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Sodium montmorillonite organically modified by octadecylammonium (Np-Clay) and zinc oxide nanoparticles (Np-ZnO) were incorporated into chitosan (C) matrix in different proportions to evaluate its mechanical properties and antimicrobial activities. The composites were obtained by polymer intercalation method in solution using acetic acid (1% v/v) as solvent. The functional groups, thermic behavior and surface morphology of the chitosan film and of the composites prepared with different percentages of Np-Clay and Np-ZnO were characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The results showed that a combined effect of clay and zinc oxide increases significantly the mechanical properties of pure chitosan. FTIR results confirmed good compatibility among functional groups of chitosan, montmorillonite/metallic oxides. The Np-ZnO distribution became more uniform in chitosan films when the Np-clay was incorporated, thus, the Np-Clay compatibilizes the Np-ZnO with the chitosan and the mechanical properties improved and without affecting the antimicrobial activity of the films. The thermal degradation temperature of the chitosan did not change significantly with the addition of Np-Clay, but changes significantly with Np-ZnO addition. In antimicrobial test was found that the chitosan and Np-ZnO showed a synergistic effect against to Escherichia coli and Staphylococcus aureus. The addition of Np-ZnO and C-Clay in chitosan resulted in enhancement of mechanical and antimicrobial properties, turning this material prospective for food packaging applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yoo J, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535

    CAS  PubMed  Google Scholar 

  2. López-Mata MA, Ruiz-Cruz S, de Jesús O-P et al (2018) Mechanical, barrier and antioxidant properties of chitosan films incorporating cinnamaldehyde. J Polym Environ 26:452–461

    Google Scholar 

  3. Rani S, Kumar R (2019) A review on material and antimicrobial properties of soy protein isolate film. J Polym Environ 27:1613–1628

    CAS  Google Scholar 

  4. Gutiérrez TJ (2018) Active and intelligent films made from starchy sources/blackberry pulp. J Polym Environ 26:2374–2391

    Google Scholar 

  5. Giunchedi P, Genta I, Conti B et al (1998) Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials 19:157–161

    CAS  PubMed  Google Scholar 

  6. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  7. Leceta I, Guerrero P, de la Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346

    CAS  PubMed  Google Scholar 

  8. Ounkaew A, Kasemsiri P, Kamwilaisak K et al (2018) Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J Polym Environ 26:3762–3772

    CAS  Google Scholar 

  9. Alabaraoye E, Achilonu M, Hester R (2018) Biopolymer (Chitin) from various marine seashell wastes: isolation and characterization. J Polym Environ 26:2207–2218

    CAS  Google Scholar 

  10. Atangana E, Chiweshe TT, Roberts H (2019) Modification of novel chitosan-starch cross-linked derivatives polymers: synthesis and characterization. J Polym Environ 27:979–995

    CAS  Google Scholar 

  11. Cagri A, Ustunol Z, Ryser E (2004) Antimicrobial edible films and coatings. J Food Prot 67:833–848

    CAS  PubMed  Google Scholar 

  12. Wu C, Li Y, Du Y et al (2019) Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocolloids 89:682–690

    CAS  Google Scholar 

  13. Haghighi H, De Leo R, Bedin E et al (2019) Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packag Shelf Life 19:31–39

    Google Scholar 

  14. Abdel Ghaffar AM, Ali HE, Nasef SM, El-Bialy HA (2018) Effect of gamma radiation on the properties of crosslinked chitosan nano-composite film. J Polym Environ 26:3226–3236

    CAS  Google Scholar 

  15. de Oliveira ACS, Ugucioni JC, da Rocha RA et al (2019) Chitosan/polyaniline conductive blends for developing packaging: electrical, morphological, structural and thermal properties. J Polym Environ. 27:2250

    Google Scholar 

  16. Otsubo Y, Kato C (1954) Hydrothermal synthesis of montmorillonite type silicates. III. synthesis of zinc-montmorillonite. J Chem Soc Jpn 75:456–459

    Google Scholar 

  17. Al-naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237

    CAS  Google Scholar 

  18. Cabuk M, Alan Y, Unal HI (2017) Enhanced electrokinetic properties and antimicrobial activities of biodegradable chitosan/organo-bentonite composites. Carbohydr Polym 161:71–81

    CAS  PubMed  Google Scholar 

  19. Sanuja S, Agalya A, Umapathy MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84

    CAS  PubMed  Google Scholar 

  20. Li L-H, Deng J-C, Deng H-R et al (2010) Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res 345:994–998

    CAS  PubMed  Google Scholar 

  21. Salari M, Sowti Khiabani M, Rezaei Mokarram R et al (2018) Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids 84:414–423

    CAS  Google Scholar 

  22. Kumar S, Shukla A, Baul PP et al (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178–184

    Google Scholar 

  23. Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111:343–350

    CAS  Google Scholar 

  24. Deng H, Lin P, Xin S et al (2012) Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity. Carbohydr Polym 89:307–313

    CAS  PubMed  Google Scholar 

  25. Vlacha M, Giannakas A, Katapodis P et al (2016) On the efficiency of oleic acid as plasticizer of chitosan/clay nanocomposites and its role on thermo-mechanical, barrier and antimicrobial properties—comparison with glycerol. Food Hydrocolloids 57:10–19

    CAS  Google Scholar 

  26. Ambre AH, Katti KS, Katti DR (2010) Nanoclay Based composite scaffolds for bone tissue engineering applications. J Nanotechnol Eng Med 1:031013

    Google Scholar 

  27. Macuvele DLP, Colla G, Cesca K et al (2019) UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid. Mater Sci Eng C 100:411–423

    CAS  Google Scholar 

  28. Jiménez A, Roxana Ruseckaite RA (2012) Environmental silicate nano-biocomposites. Springer, Berlin, p 393

    Google Scholar 

  29. Rhim JW, Wang LF, Hong SI (2013) Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids 33:327–335

    CAS  Google Scholar 

  30. Souza VGL, Pires JRA, Vieira ÉT et al (2019) Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocolloids 89:241–252

    CAS  Google Scholar 

  31. Qin Y, Liu Y, Yuan L et al (2019) Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids 96:102–111

    CAS  Google Scholar 

  32. Priyadarshi R, Negi YS (2017) Effect of varying filler concentration on zinc oxide nanoparticle embedded chitosan films as potential food packaging material. J Polym Environ 25:1087–1098

    CAS  Google Scholar 

  33. Blasco C, Picó Y (2011) Determining nanomaterials in food. TrAC, Trends Anal Chem 30:84–99

    CAS  Google Scholar 

  34. Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/ hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:034122

    PubMed  Google Scholar 

  35. Motshekga SC, Sinha S, Onyango MS, Momba MNB (2015) Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci 114:330–339

    CAS  Google Scholar 

  36. Müller L (2013) Incorporação de óleo essencial de cravo em membranas de quitosana e avaliação da atividade antimicrobiana e cicatrizante. Universidade Federal de Santa Catarina

  37. Signini R, Campana Filho SP (1998) Purificação e caracterização de quitosana comercial. Polímeros 8:63–68

    CAS  Google Scholar 

  38. Massinga PH, Focke WW, de Vaal PL, Atanasova M (2010) Alkyl ammonium intercalation of Mozambican bentonite. Appl Clay Sci 49:142–148

    CAS  Google Scholar 

  39. Macuvele DLP, Nones J, Matsinhe JV et al (2017) Simultaneous effect of reaction temperature and concentration of surfactant in organo-bentonite synthesis. Mater Sci Forum 899:42–47

    Google Scholar 

  40. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24:770–775

    CAS  Google Scholar 

  41. Brugnerotto J, Lizardi J, Goycoolea F et al (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

    CAS  Google Scholar 

  42. Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2013.879445

    Article  Google Scholar 

  43. Wang X, Du Y, Yang J et al (2006) Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47:6738–6744

    CAS  Google Scholar 

  44. Szymanska E, Winnicka K (2015) Stability of chitosan- A challenge for pharmaceutical and biomedical applications. Marine Drugs 13:1819–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kittur FS, Harish Prashanth KV, Udaya Sankar K, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193

    CAS  Google Scholar 

  46. Martins CS, Morgado DL, Benedito O, Assis G (2016) Cashew gum-chitosan blended films:spectral, mechanical and surface wetting evaluations. Macromol Res 24:691–697

    CAS  Google Scholar 

  47. Ma X, Zhang W (2009) Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stab 94:1103–1109

    CAS  Google Scholar 

  48. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523:1–24

    CAS  Google Scholar 

  49. Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056

    CAS  Google Scholar 

  50. El-Hefian EA, Nasef MM, Yahaya AH (2011) Preparation and characterization of chitosan/poly(vinyl alcohol) blended films: Mechanical, thermal and surface investigations. E J Chem 8:91–96

    CAS  Google Scholar 

  51. Azizi S, Ahmad MB, Ibrahim NA et al (2014) Cellulose nanocrystals/ZnO as a bifunctional reinforcing nanocomposite for poly(vinyl alcohol)/chitosan blend films: fabrication, characterization and properties. Int J Mol Sci 15:11040–11053

    CAS  PubMed  PubMed Central  Google Scholar 

  52. da Silvano JR, Santa RAAB, Martins MAPM et al (2018) Nanocomposite of erucamide-clay applied for the control of friction coefficient in surfaces of LLDPE. Polym Test 67:1–6

    CAS  Google Scholar 

  53. Tianwei T, Xiaojing H, Weixia D (2001) Adsorption behaviour of metal ions on imprinted chitosan resin. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.358

    Article  Google Scholar 

  54. Hu SG, Jou CH, Yang MC (2003) Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials 24:2685

    CAS  PubMed  Google Scholar 

  55. Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Google Scholar 

  56. Shao WF, Chin FL, Daniel S (1994) Antifungal activity of chitosan and its preservative effect on low sugar candied Kumquat. J Food Prot 57:136–140

    Google Scholar 

  57. Han Y-S, Lee S-H, Choi KH, Park I (2010) Preparation and characterization of chitosan–clay nanocomposites with antimicrobial activity. J Phys Chem Solids 71:464–467

    CAS  Google Scholar 

  58. Jung B-O, Kim C-H, Choi K-S et al (1999) Preparation of amphiphilic chitosan and their antimicrobial activities. J Appl Polym Sci 72:1713–1719

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Foundation for Support to Scientific and Technological Research of Santa Catarina State – FAPESC, CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingos Lusitâneo Pier Macuvele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C., de Mello, J.M.M., Dalcanton, F. et al. Mechanical, Thermal and Antimicrobial Properties of Chitosan-Based-Nanocomposite with Potential Applications for Food Packaging. J Polym Environ 28, 1216–1236 (2020). https://doi.org/10.1007/s10924-020-01678-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01678-y

Keywords

Navigation