Skip to main content

Advertisement

Log in

Effects of Various Methods of Chemical Modification of Lignocellulose Hazelnut Shell Waste on a Newly Synthesized Bio-based Epoxy Composite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel bio-based epoxy resin (ESA) with curable double bonds was synthesized by esterification reaction between sebacic acid (SAc) and epichlorohydrin (ECH). Its chemical structure was confirmed by FT-IR and 1H NMR. Untreated, alkali treated, acrylic acid (AcA)- and acetic anhydride (AA) modified hazelnut shell waste (HSh) were used as inexpensive reinforcing materials in the ESA matrix system. The composites were prepared with HSh in varied per cent values (10–50 wt%) using the casting technique. The effects of chemical modification and amount of reinforcement materials on the properties of the composites were investigated. The composites were characterized using mechanical tests, as well as SEM, XRD, TGA, and contact angle measurement. The morphological results indicate an improvement in adhesion between the HSh fillers and ESA matrix upon chemical treatments. The modified HShs reinforced composites showed an increase of 7.7–46.2% in elongation at break when compared to the untreated HSh reinforced composite at more appropriate 20 wt% of filler. Also, tensile strengths of all chemically modified HSh composites are higher than that obtained with neat ESA and untreated HSh composites. It was observed that 20 wt% AA-modified HSh composite exhibited higher tensile strength (66 MPa) and elasticity modulus E (6.72 GPa) values. The TGA analysis showed that the HShs can significantly improve the thermal stability of neat ESA. Vicat softening temperature (VST) of composites was obtained higher than epoxy matrix. Additionally, all composites exhibited hydrophobic surfaces. The incorporation of HSh fillers reduces the wetting and hydrophilicity of synthesized epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Battegazzore D, Frache A (2019) J Polym Environ 27:2213

    CAS  Google Scholar 

  2. Pilla S (2011) Handbook of bioplastics and biocomposites engineering applications. Wiley, New Jersey

    Google Scholar 

  3. Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) J Polym Environ 13:87

    CAS  Google Scholar 

  4. Sarwono A, Man Z, Bustam MA (2012) J Polym Environ 20:540

    CAS  Google Scholar 

  5. Niedermann P, Szebényi G, Toldy A (2014) J Polym Environ 22:525

    CAS  Google Scholar 

  6. Park S-J, Jin F-L, Lee J-R (2004) Macromol Chem Phys 205:2048

    CAS  Google Scholar 

  7. Thulasiraman V, Rakesh S, Sarojadevi M (2009) Polym Compos 30:49

    CAS  Google Scholar 

  8. Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P (2014) Chem Rev 114:1082

    CAS  PubMed  Google Scholar 

  9. Ma S, Liu X, Jiang Y, Tang Z, Zhang C, Zhu J (2013) Green Chem 15:245

    CAS  Google Scholar 

  10. Bledzki A, Jaszkiewicz A (2010) Compos Sci Technol 70:1687

    CAS  Google Scholar 

  11. Kocaman S, Karaman M, Gursoy M, Ahmetli G (2017) Carbohydr Polym 159:48

    CAS  PubMed  Google Scholar 

  12. Álvarez-Chávez C, Sánchez-Acosta D, Encinas-Encinas J, Esquer J, Quintana-Owen P, Madera-Santana T (2017) Int J Polym Sci 2017:1

    Google Scholar 

  13. Battegazzore D, Noori A, Frache A (2019) J Compos Mater 53:783

    CAS  Google Scholar 

  14. Demirkaya E, Dal O, Yüksel A (2019) J Supercrit Fluids 150:11

    CAS  Google Scholar 

  15. Battegazzore D, Alongi J, Frache A (2014) J Polym Environ 22:88

    CAS  Google Scholar 

  16. Mitra B (2014) Def Sci J 64:244

    CAS  Google Scholar 

  17. Balart JF, Fombuena V, Fenollar O, Boronat T, Sánchez-Nacher L (2016) Compos B 86:168

    CAS  Google Scholar 

  18. Balart JF, García-Sanoguera D, Balart R, Boronat T, Sánchez-Nacher L (2018) Polym Compos 9:848

    Google Scholar 

  19. Matějka V, Fu Z, Kukutschová J, Qi S, Jiang S, Zhang X, Yun R, Vaculik M, Heliova M, Lu Y (2013) Mater Design 51:847

    Google Scholar 

  20. Bryśkiewicz A, Zieleniewska M, Przyjemska K, Chojnacki P, Ryszkowska J (2016) Polym Degrad Stab 132:32

    Google Scholar 

  21. Guru M, Aruntas Y, Tuzun FN, Bilici I (2009) Fire Mater 33:413

    Google Scholar 

  22. Demirer H, Kartal I, Yıldırım A, Büyükkaya K (2018) Acta Phys Polon A 134:254

    CAS  Google Scholar 

  23. Müller M, Valášek P, Linda M, Petrásek S (2018) Sci Agric Bohem 49:53

    Google Scholar 

  24. Salasinska K, Barczewski M, Borucka M, Górny RL, Kozikowski P, Celiński M, Gajek A (2019) Polymers 11:1234

    PubMed Central  Google Scholar 

  25. Gu H (2009) Mater Design 30:3931

    CAS  Google Scholar 

  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Lab Anal Proced 1617:1

    Google Scholar 

  27. Haykiri-Acma H, Yaman S (2007) Fuel 86:373

    CAS  Google Scholar 

  28. Sonia A, Priya Dasan K (2013) Carbohydr Polym 92:668

    CAS  PubMed  Google Scholar 

  29. Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada Rajulu A (2013) Compos B 44:433

    CAS  Google Scholar 

  30. Prasad PN, Mark JE, Kandil SH, Kafafi ZH (1998) Science and technology of polymers and advanced materials. Springer, New York

    Google Scholar 

  31. Narendar R, Priya Dasan K (2014) Compos B 56:770

    CAS  Google Scholar 

  32. Kocaman S, Ahmetli G (2016) Prog Org Coat 97:53

    CAS  Google Scholar 

  33. Mandhakini M, Chandramohan A, Rangaraju Vengatesan M, Alagar M (2011) High Perform Polym 23:403

    CAS  Google Scholar 

  34. Mustata FR, Tudorachi N, Bicu I (2013) Ind Eng Chem Res 52:17099

    CAS  Google Scholar 

  35. Wang R, Schuman Th, Vuppalapati RR, Chandrashekhara K (2014) Green Chem 16:1871

    CAS  Google Scholar 

  36. Yang X, Wang Ch, Li Sh, Huang K, Li M, Mao W, Cao Sh, Xia J (2017) RSC Adv 7:238

    CAS  Google Scholar 

  37. Mellor BG (2006) Surface coatings for protection against wear. CRC Press, Boca Raton

    Google Scholar 

  38. Guo X, Xin J, Huang J, Wolcott MP, Zhang J (2019) Polymer 183:121859

    Google Scholar 

  39. Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) Compos B 43:2835

    Google Scholar 

  40. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Compos B 133:217

    Google Scholar 

  41. Erdik E (2008) Spectroscopic methods in organic chemistry. Gazi Bookstore, Ankara

    Google Scholar 

  42. Wang H, Li FS, Zhu BW, Guo L, Yang Y, Hao R, Wang H, Liu Y, Wang W, Guo X, Chen X (2016) Adv Funct Mater 26:3472

    CAS  Google Scholar 

  43. Hirose S, Hatakeyama T, Hatakeyama H (2005) Thermochim Acta 431:76

    CAS  Google Scholar 

  44. Alemdar A, Sain M (2008) Compos Sci Technol 68:557

    CAS  Google Scholar 

  45. Mwaikambo LY, Ansell MP (2002) J Appl Polym Sci 84:2222

    CAS  Google Scholar 

  46. Muensri P, Kunanopparat T, Menut P, Siriwattanayotin S (2011) Compos A 42:173

    Google Scholar 

  47. Wada M, Sugiyama J, Okano T (1993) J Appl Polym Sci 49:1491

    CAS  Google Scholar 

  48. Khawas P, Deka SC (2016) Carbohydr Polym 137:608

    CAS  PubMed  Google Scholar 

  49. Laaziz SA, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R, El kacem Qaiss A (2017) Int J Biol Macromol 104:30

    CAS  PubMed  Google Scholar 

  50. Battegazzore D, Noori A, Frache A (2019) Polym Compos 40:3429

    CAS  Google Scholar 

  51. Raju GU, Kumarappa S (2011) J Reinf Plast Compos 30:1029

    CAS  Google Scholar 

  52. Móczó J, Pukánszky B (2008) J Ind Eng Chem 14:535

    Google Scholar 

  53. Gong L-X, Zhao L, Tang L-C, Liu H-Y, Mai Y-W (2015) Compos Sci Technol 121:104

    CAS  Google Scholar 

  54. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Int J Biol Macromol 97:190

    CAS  PubMed  Google Scholar 

  55. John MJ, Anandjiwala RD (2008) Polym Compos 29:187

    CAS  Google Scholar 

  56. Kabir MM, Wang H, Lau KT, Cardona F (2012) Compos B 43:2883

    CAS  Google Scholar 

  57. Zafeiropoulos NE, Dijon GG, Baillie CA (2007) Compos A 38:621

    Google Scholar 

  58. Brostow W, Hagg Lobland HE, Khoja S (2015) Mater Lett 159:478

    CAS  Google Scholar 

  59. Cimino G, Passerini A, Toscano G (2000) Water Res 34:2955

    CAS  Google Scholar 

  60. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Compos B 39:933

    Google Scholar 

  61. Kwon S-C, Adachi T, Araki W, Yamaji A (2008) Compos B 39:740

    Google Scholar 

  62. Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS (2011) eXPRESS Polym Lett 5:581

    CAS  Google Scholar 

  63. Liyanage CD, Pieris M (2015) Procedia Chem 16:222

    CAS  Google Scholar 

  64. Guzel G, Sivrikaya O, Deveci H (2016) Compos B 100:1

    CAS  Google Scholar 

  65. Fombuena V, Sanchez-Nacher L, Samper MD, Juarez D, Balart R (2013) J Am Oil Chem Soc 90:449

    CAS  Google Scholar 

  66. Slepickova Kasalkova N, Slepicka P, Kolska Z, Svorcik V (2015) In: Aliofkhazraei M (ed) Wetting and wettability, vol 12. IntechOpen, Moscow

    Google Scholar 

  67. Gurunathan T, Mohanty S, Nayak SK (2015) Compos A 77:1

    CAS  Google Scholar 

  68. Gursoy M, Karaman M (2016) Chem Eng J 284:343

    CAS  Google Scholar 

  69. Brady JE, Durig T, Shang S (2008) Theories and techniques in the characterization of drug substances and excipients. Academic Press, London

    Google Scholar 

  70. Ambone T, Joseph S, Deenadayalan E, Mishra S, Jaisankar S, Saravanan P (2017) J Polym Environ 25:1099

    CAS  Google Scholar 

  71. Barczewski M, Sałasińska K, Szulc J (2019) Polym Test 75:1

    CAS  Google Scholar 

  72. Panneerdhass R, Gnanavelbabu A, Rajkumar K (2014) Procedia Eng 97:2042

    CAS  Google Scholar 

  73. Yovial Y, Marthiana W, Duskiardi D, Habibi H (2017) J Agroind 7:56

    Google Scholar 

  74. Kocaman S, Ahmetli G (2017) In: Book of abstracts, Baltic Polymer Symposium, Tallinn, Estonia, p 130

  75. Boran S (2016) BioResour 11:1741

    CAS  Google Scholar 

  76. Cipriano JdeP, Zanini NC, Dantas IR, Mulinari DR (2019) J Renew Mater 7:1047

    Google Scholar 

  77. Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, Elkacem Qaiss A (2016) Carbohydr Polym 143:70

    CAS  PubMed  Google Scholar 

  78. Essabir H, El Achaby M, EI Moukhtar H, Bouhfid R, El kacem Qaiss A (2015) J Bionic Eng 12:129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulnare Ahmetli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocaman, S., Ahmetli, G. Effects of Various Methods of Chemical Modification of Lignocellulose Hazelnut Shell Waste on a Newly Synthesized Bio-based Epoxy Composite. J Polym Environ 28, 1190–1203 (2020). https://doi.org/10.1007/s10924-020-01675-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01675-1

Keywords

Navigation