Effect of the Addition of Citric Acid and Whey Protein Isolate in Canna indica L. Starch Films Obtained by Solvent Casting

Abstract

In this study, the effect of the addition of citric acid (CA) and whey protein isolate (WPI) on film properties of the starch extracted from the achira rhizome (Canna indica L.) was evaluated. For this purpose, starch films were prepared by solvent casting with different CA and WPI concentrations. Starch granules were fully characterized and the chemical and thermal behavior of the obtained starch films were also studied. The retrogradation phenomenon was analyzed in films from 1 week to 1 year of preparation. Maximum tensile strength (max) and maximum elongation at break (max), as well as water vapor permeability, were measured for all films. It was found that both molecules, CA and WPI, show a plasticizing effect on starch films, favoring the formation of a more uniform and resistant material by means of hydrogen bonding. A partial crosslinking between CA and starch was found by Fourier transform infrared, which is coherent with a higher degradation temperature peak found by thermogravimetric analysis. It was also observed that starch retrogradation was affected by the presence of both molecules, CA and WPI. The highest max (5.7 ± 0.1 N/mm2) and max (35%) values were achieved at the eighth weeks when both CA (6%) and WPI (11%) were used. Addition of CA and WPI did not show a significant difference in permeability values of starch films (1.40 × 10−9 ± 0.10 g/m s Pa).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148

    Article  CAS  Google Scholar 

  2. 2.

    Gadhave RV, Das A, Mahanwar PA, Gadekar PT (2018) Starch based bio-plastics: the future of sustainable packaging. Open J Polym Chem 8(2):21–33

    Article  CAS  Google Scholar 

  3. 3.

    Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int J Biol Macromol 109:1095–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Molavi H, Behfar S, Shariati MA, Kaviani M, Atarod S (2015) A review on biodegradable starch based film. J Microbiol Biotechnol Food Sci 5(4):456–461

    Article  CAS  Google Scholar 

  6. 6.

    Bertoft E (2017) Understanding starch structure: recent progress. Agronomy 7(3):56

    Article  CAS  Google Scholar 

  7. 7.

    Xie F, Pollet E, Halley PJ, Avérous L (2015) Advanced nano-biocomposites based on starch. In: Polysaccharides: Bioactivity and biotechnology. Springer, Cham, pp 1467–1553

  8. 8.

    Wang S, Chao C, Xiang F, Zhang X, Wang S, Copeland L (2018) New insights into gelatinization mechanisms of cereal endosperm starches. Sci Rep 8:3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cornejo-Ramírez YI, Martínez-Cruz O, Toro-Sánchez CLD, Wong-Corral FJ, Jesús BF, Cinco-Moroyoqui FJ (2018) The structural characteristics of starches and their functional properties. CyTA J Food 16(1):1003–1017

    Article  CAS  Google Scholar 

  10. 10.

    Azeredo HMC, Waldron KW (2016) Crosslinking in polysaccharide and protein films and coatings for food contact—a review. Trends Food Sci Technol 52:109–122

    Article  CAS  Google Scholar 

  11. 11.

    Enríquez-Collazos MG, Velasco-Mosquera R, Fernandez-Quintero A, Palacios LM, Ruales-Madroñero DJ (2013) Desarrollo de un biomaterial a partir de almidón modificado de yuca, agente antimicrobiano y plastificante. Biotecnol Sect Agropecu Agroind 11(2):111–120

    Google Scholar 

  12. 12.

    Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076

    Article  CAS  Google Scholar 

  13. 13.

    Ghanbarzadeh B, Almasi H, Entezami AA (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crops Prod 33(1):229–235

    Article  CAS  Google Scholar 

  14. 14.

    Khan B, Khan Niazi MB, Hussain A, Jahan Z (2017) Influence of carboxylic acids on mechanical properties of thermoplastic starch by spray drying. Fibers Polym 18(1):64–73

    Article  CAS  Google Scholar 

  15. 15.

    Lobo-Arias M, Medina-Cano CI, Grisales-Arias JD, Yepes-Agudelo AF, Álvarez-Guzmán JA (2017) Caracterización y evaluación morfológicas de la colección colombiana de achira, Canna edulis Ker Gawl. (Cannaceae). Corpoica Cienc Tecnol Agropecu 18(1):47–73

    Article  Google Scholar 

  16. 16.

    Fuentes C, Perez-Rea D, Bergenståhl B, Carballo S, Sjöö M, Nilsson L (2019) Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. Int J Biol Macromol 125:829–838

    Article  CAS  Google Scholar 

  17. 17.

    Ayala Valencia G, Agudelo Henao AC, Vargas Zapata RA (2012) Comparative study and characterization of starches isolated from unconventional tuber sources. J Polym Eng 32(8–9):531–537

    Article  CAS  Google Scholar 

  18. 18.

    Santacruz S, Ruales J, Eliasson AC (2003) Three underutilised sources of starch from the Andean region in Ecuador Part II. Rheological characterisation. Carbohydr Polym 51(1):85–92

    Article  CAS  Google Scholar 

  19. 19.

    Hafnimardiyanti H, Ikhlas Armin M, Martalius M (2014) Edible film making of starch Canna tuber (Canna edulis Kerr) and application to packaging galamai. Int J Adv Sci Eng Inf Technol 4(3):53–56

    Article  Google Scholar 

  20. 20.

    Andrade Mahecha MM, Tapia-Blácido DR, Menegalli FC (2011) Development and optimization of biodegradable films based on achira flour. Carbohydr Polym 88(2):449–458

    Article  CAS  Google Scholar 

  21. 21.

    Hernández O, Emaldi U, Tovar J (2008) In vitro digestibility of edible films from various starch sources. Carbohydr Polym 71(4):648–655

    Article  CAS  Google Scholar 

  22. 22.

    Adeodato Vieira MG, Altenhofen da Silva M, Oliveira dos Santos L, Masumi Beppu M (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263

    Article  CAS  Google Scholar 

  23. 23.

    Jiugao Y, Ning W, Xiaofei M (2005) The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch 57:494–504

    Article  CAS  Google Scholar 

  24. 24.

    Basiak E, Lenart A, Debeaufort F (2018) How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers 10(4):412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Cucinelli Neto RP, de Rocha Rodrigues EJ, Bruno Tavares MI (2018) Proton NMR relaxometry as probe of gelatinization, plasticization and montmorillonite-loading effects on starch-based materials. Carbohydr Polym 182:123–131

    Article  CAS  Google Scholar 

  26. 26.

    Esmaeili M, Pircheraghi G, Bagheri R (2017) Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. Polym Int 66(6):809–819

    Article  CAS  Google Scholar 

  27. 27.

    Juansang J, Puttanlek C, Rungsardthong V, Puncha-arnon S, Jiranuntakul W, Uttapap D (2015) Pasting properties of heat–moisture treated Canna starches using different plasticizers during treatment. Carbohydr Polym 122:152–159

    Article  CAS  Google Scholar 

  28. 28.

    González Seligra P, Jaramillo CM, Famá L, Goyanes S (2016) Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohydr Polym 138:66–74

    Article  CAS  Google Scholar 

  29. 29.

    Garavand F, Rouhi M, Razavi SH, Cacciotti I, Mohammadi R (2017) Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: a review. Int J Biol Macromol 104:687–707

    Article  CAS  Google Scholar 

  30. 30.

    Chiralt A, González-Martínez C, Vargas M, Atarés L (2008) Edible films and coatings from proteins. In: Yada RY (ed) Proteins in food processing, 2nd edn. Woodhead Publishing, Cambridge, pp 477–500

    Google Scholar 

  31. 31.

    Tao F, Shi C, Cui Y (2018) Preparation and physicochemistry properties of smart edible films based on gelatin–starch nanoparticles. J Sci Food Agric 98(14):5470–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Fakhouri FM, Martelli SM, Caon T, Velasco JI, Mei LHI (2015) Edible films and coatings based on starch/gelatin: film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol Technol 109:57–64

    Article  CAS  Google Scholar 

  33. 33.

    Wherry B, Barbano DM, Drake MA (2019) Use of acid whey protein concentrate as an ingredient in nonfat cup set-style yogurt. J Dairy Sci 102(10):8768–8784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chalermthai B, Chan WY, Bastidas-Oyanedel JR, Taher H, Olsen BD, Schmidt JE (2019) Preparation and characterization of whey protein-based polymers produced from residual dairy streams. Polymers 11(4):722

    Article  CAS  Google Scholar 

  35. 35.

    Bonnaillie LM, Qi P, Wickham E, Tomasula PM (2014) Enrichment and purification of casein glycomacropeptide from whey protein isolate using supercritical carbon dioxide processing and membrane ultrafiltration. Foods 3:94–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Shendurse AM, Gopikrishna G, Patel AC, Pandya AJ (2018) Milk protein based edible films and coatings—preparation, properties and food applications. J Nutr Health Food Eng 8(2):219–226

    Google Scholar 

  37. 37.

    Basiak E, Lenart A, Debeaufort F (2017) Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. J Sci Food Agric 97(3):858–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Azevedo VM, Borges SV, Marconcini JM, Yoshida MI, Neto ARS, Pereira TC, Pereira CFG (2017) Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydr Polym 157:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Juliano BO (1971) A simplified assay for milled-rice amylose. Cereal Sci Today 16:334–360

    Google Scholar 

  40. 40.

    Soni PL, Sharma H, Srivastava HC, Gharia M (1990) Physicochemical properties of Canna edulis starch—comparison with maize starch. Starch 42(12):460–464

    Article  CAS  Google Scholar 

  41. 41.

    Andrade-Mahecha MM, Tapia-Blácido DR, Menegalli FC (2012) Physical–chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origin. Starch 64:348–358

    Article  CAS  Google Scholar 

  42. 42.

    Inatsu O (1983) Edible Canna starch. I. J Jpn Soc Starch Sci 30:38–47

    Article  CAS  Google Scholar 

  43. 43.

    Moorthy SN, Andersson L, Eliasson A, Santacruz S, Ruales J (2006) Determination of amylose content in different starches using modulated differential scanning calorimetry. Starch 58(5):209–214

    Article  CAS  Google Scholar 

  44. 44.

    Puncha-arnon S, Puttanlek C, Rungsardthong V, Pathipanawat W, Uttapap D (2007) Changes in physicochemical properties and morphology of Canna starches during rhizomal development. Carbohydr Polym 70(2):206–217

    Article  CAS  Google Scholar 

  45. 45.

    Aprianita A, Vasiljevic T, Bannik A, Kasapis S (2014) Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. J Food Sci Technol 51(12):3669–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zhang K, Cheng F, Lin Y, Zhou M, Zhu Px (2018) Effect of hyperbranched poly(trimellitic glyceride) with different molecular weight on starch plasticization and compatibility with polyester. Carbohydr Polym 195:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Rindlav-Westling A, Stading M, Hermansson AM, Gatenholm P (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym 36(2–3):217–224

    Article  CAS  Google Scholar 

  48. 48.

    Dang KM, Yoksan R (2015) Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ramos ÓL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Poças MF, Pintado ME, Malcata FX (2013) Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll 30(1):110–122

    Article  CAS  Google Scholar 

  50. 50.

    Guerrero P, Retegi A, Gabilondo N, de la Caba K (2010) Mechanical and thermal properties of soy protein films processed by casting and compression. J Food Eng 100(1):145–151

    Article  CAS  Google Scholar 

  51. 51.

    Van Soest JJG, Tournois H, de Wit D, Vliegenthart JFG (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279:201–214

    Article  Google Scholar 

  52. 52.

    Zhang J, Chen F, Liu F, Wang ZW (2010) Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocoll 24(1):27–34

    Article  CAS  Google Scholar 

  53. 53.

    Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr Polym 69(4):748–755

    Article  CAS  Google Scholar 

  54. 54.

    Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118(3):702–711

    Article  CAS  Google Scholar 

  55. 55.

    Azevedo VM, Borges SV, Marconcini JM, Yoshida MI, Neto ARS, Pereira TC, Pereira CFG (2017) Optical and structural properties of biodegradable whey protein isolate nanocomposite films for active packaging. Int J Food Prop 20(2):1869–1878

    CAS  Google Scholar 

  56. 56.

    Hundre SY, Karthik P, Anandharamakrishnan C (2015) Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method. Food Chem 174:16–24

    Article  CAS  Google Scholar 

  57. 57.

    Hammann F, Schmid M (2014) Determination and quantification of molecular interactions in protein films: a review. Materials 7:7975–7996

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Dangaran K, Krochta JM (2008) Chapter 6: whey protein films and coatings. In: Onwulata CI, Huth PJ (eds) Whey processing, functionality and health benefits. Wiley, Hoboken, pp 133–167

    Chapter  Google Scholar 

  59. 59.

    Chatterton DEW, Smithers G, Roupas P, Brodkorb A (2006) Bioactivity of β-lactoglobulin and α-lactalbumin—technological implications for processing. Int Dairy J 16(11):1229–1240

    Article  CAS  Google Scholar 

  60. 60.

    Kadam DM, Thunga M, Wang S, Kessler MR, Grewell D, Lamsal B, Yu C (2013) Preparation and characterization of whey protein isolate films reinforced with porous silica coated titania nanoparticles. J Food Eng 117(1):133–140

    Article  CAS  Google Scholar 

  61. 61.

    Feng T, Zhuang H, Chen F, Campanella O, Bhopatkar D, Carignano MA, Park SH (2018) Chapter 7: starch–lipid and starch–protein complexes and their application. In: Functional starch and applications in food, vol 1. Springer, Singapore, pp 177–226

  62. 62.

    Mali S, Grossmann MVE, Maria AG, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr Polym 50(4):379–386

    Article  CAS  Google Scholar 

  63. 63.

    Ortega-Toro R, Bonilla J, Talens P, Chiralt A (2017) Future of starch-based materials in food packaging. In: Vilar M, Barbosa SE, García MA, Castillo L, Lopez OV (eds) Starch-based materials in food packaging: processing, characterization and applications, 1st edn. Elsevier, São Paulo, pp 257–312

    Chapter  Google Scholar 

  64. 64.

    Perez-Gago MB, Krochta JM (2000) Drying temperature effect on water vapor permeability and mechanical properties of whey protein–lipid emulsion films. J Agric Food Chem 48(7):2687–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Basiak E, Galus S, Lenart A (2015) Characterisation of composite edible films based on wheat starch and whey-protein isolate. Int J Food Sci Technol 50(2):372–380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Universidad Nacional de Colombia (Grant Number 37454) and COLCIENCIAS (Departamento Administrativo de Ciencia Tecnología e Innovación, Convocatoria 567 Doctorados Nacionales). The authors acknowledge the Ciencia y Tecnología de Alimentos (CYTA) Research Group, for their help in the starch characterization. CYTA belongs to the Faculty of Agro-industrial Sciences, at Universidad del Quindío.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jairo E. Perilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ávila-Martín, L., Beltrán-Osuna, Á.A. & Perilla, J.E. Effect of the Addition of Citric Acid and Whey Protein Isolate in Canna indica L. Starch Films Obtained by Solvent Casting. J Polym Environ 28, 871–883 (2020). https://doi.org/10.1007/s10924-019-01648-z

Download citation

Keywords

  • Starch films
  • Whey protein isolate
  • Citric acid
  • Retrogradation
  • Plasticizer