Effect of Different Fillers on the Biodegradation Rate of Thermoplastic Starch in Water and Soil Environments


This work investigates the effect of filler type on the rate of biodegradation of thermoplastic starch-based films in water and soil environments. The authors applied the casting method to create films of thermoplastic starch, based on waste paper, filled with clays or organic fillers. Since such materials made from cellulose tend to absorb water, we hydrophobized the surfaces of the filled thermoplastic starch samples. The structures of the blends were characterized by infrared spectroscopy, while atomic-force microscopy was applied to observe change in surface topography and the distribution of the filler. We also studied moisture resistance of the blends. Biodegradation tests revealed that surface topography, distribution of the filler and starch-to-filler interactions were non-critical to the rate and degree of biodegradation of the blends. The biodegradation rate of the blends was strongly affected by the environmental conditions (relative humidity 54%, 100%, respectively; temperature 25 °C, 37 °C, respectively). Under anaerobic conditions, it was the mixtures that biodegraded to the greatest extent, whereas the hydrophobized mixtures did so the least.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    López OV, Castillo LA, Garcia MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids 43:18–24

    Article  Google Scholar 

  2. 2.

    Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Stärke 65(1–2):61–72

    Article  Google Scholar 

  3. 3.

    Lendvai L, Karger-Kocsis J, Kmetty Á, Drakopoulos SX (2016) Production and characterization of microfibrillated cellulose-reinforced thermoplastic starch composites. J Appl Polym Sci 133(2):42397

    Article  Google Scholar 

  4. 4.

    Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R (2017) Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 157:1094–1104

    CAS  Article  Google Scholar 

  5. 5.

    Mondragón M, Mancilla JE, Rodríguez-González FJ (2008) Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches. Polym Eng Sci 48(7):1261–1267

    Article  Google Scholar 

  6. 6.

    Chen B, Evans JR (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61(4):455–463

    CAS  Article  Google Scholar 

  7. 7.

    Magalhães NF, Andrade CT (2009) Thermoplastic corn starch/clay hybrids: effect of clay type and content on physical properties. Carbohydr Polym 75(4):712–718

    Article  Google Scholar 

  8. 8.

    Magalhães NF, Andrade CT (2010) Calcium bentonite as reinforcing nanofiller for thermoplastic starch. J Braz Chem Soc 21(2):202–208

    Article  Google Scholar 

  9. 9.

    Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287(8):553–558

    CAS  Article  Google Scholar 

  10. 10.

    Lu P, Zhang M, Li C, Liu Z (2012) Effect of acid-modified clay on the microstructure and performance of starch films. Polym Plast Technol Eng 51(13):1340–1345

    CAS  Article  Google Scholar 

  11. 11.

    Castillo L, López O, López C, Zaritzky N, García MA, Barbosa S, Villar M (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohydr Polym 95(2):664–674

    CAS  Article  Google Scholar 

  12. 12.

    Olivato JB, Marini J, Yamashita F, Pollet E, Grossmann MVE, Avérous L (2017) Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester. Mater Sci Eng C 70:296–302

    CAS  Article  Google Scholar 

  13. 13.

    Bootklad M, Kaewtatip K (2013) Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydr Polym 97(2):315–320

    CAS  Article  Google Scholar 

  14. 14.

    Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57(1):106–115

    CAS  Article  Google Scholar 

  15. 15.

    González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90

    Article  Google Scholar 

  16. 16.

    Martins IM, Magina SP, Oliveira L, Freire CS, Silvestre AJ, Neto CP, Gandini A (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69(13):2163–2168

    CAS  Article  Google Scholar 

  17. 17.

    Dogossy G, Czigany T (2011) Thermoplastic starch composites reinforced by agricultural by-products: properties, biodegradability, and application. J Reinf Plast Compos 30(21):1819–1825

    CAS  Article  Google Scholar 

  18. 18.

    Prachayawarakorn J, Ruttanabus P, Boonsom P (2011) Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. J Polym Environ 19(1):274–282

    CAS  Article  Google Scholar 

  19. 19.

    Duchek P, Dlouhý J, Franče P (2014) Composite biodegradable materials based on potato starch and micro/nanofillers. Eights Int Conf Mater Technol Model MMT 2014:1–44

    Google Scholar 

  20. 20.

    Julinová M, Slavík R, Kalendová A, Smida P, Kratina J (2014) Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment. Iran Polym J 23(7):547–557

    Article  Google Scholar 

  21. 21.

    Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr Polym 101:11–19

    CAS  Article  Google Scholar 

  22. 22.

    Julinová M, Slavík R, Vyoralová M, Kalendová A, Alexy P (2018) Utilization of waste lignin and hydrolysate from chromium tanned waste in blends of hot-melt extruded PVA-starch. J Polym Environ 26(4):1459–1472

    Article  Google Scholar 

  23. 23.

    Bullock CM, Bicho PA, Zhang Y, Saddler JN (1996) A solid chemical oxygen demand (COD) method for determining biomass in waste waters. Water Res 30(5):1280–1284

    CAS  Article  Google Scholar 

  24. 24.

    ISO 15705:2002 Water quality—determination of the chemical oxygen demand—Small-scale dealer-tube method. Czech Standards Institute, Prague, Czech republic

  25. 25.

    Julinová M, Dvořáčková M, Kupec J, Hubáčková J, Kopčilová M, Hoffmann J, Alexy P, Nahálková A, Vašková I (2008) Influence of technological process on biodegradation of PVA/WAXY starch blends in an aerobic and anaerobic environment. J Polym Environ 16(4):241–249

    Article  Google Scholar 

  26. 26.

    ISO 17556:2012 Plastics-Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. Czech Standards Institute, Prague, Czech republic

  27. 27.

    Rizzarelli P, Puglisi C, Montaudo G (2004) Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym Degrad Stabil 85(2):855–863

    CAS  Article  Google Scholar 

  28. 28.

    Pitter P, Chudoba J (1990) Biodegradability of organic substance in the aquatic environment, CRC Press, Boca Raton

  29. 29.

    Hoffmann J, Řeznı́čková I, Kozáková J, Růžička J, Alexy P, Bakoš D, Precnerová L (2003) Assessing biodegradability of plastics based on poly (vinyl alcohol) and protein wastes. Polym Degrad Stabil 79(3):511–519

    CAS  Article  Google Scholar 

  30. 30.

    Nunes MA, Castro-Aguirre E, Auras RA, Bardi MA, Carvalho LH (2019) Effect of babassu mesocarp incorporation on the biodegradation of a PBAT/TPS Blend. Macromol Symp 383(1):1800043

    Article  Google Scholar 

  31. 31.

    Zullo R, Iannace S (2009) The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: correlation among process, elongational properties and macromolecular structure. Carbohydr Polym 77(2):376–383

    CAS  Article  Google Scholar 

  32. 32.

    Lazzari M, Chiantore O (1999) Drying and oxidative degradation of linseed oil. Polym Degrad Stabil 65(2):303–313

    CAS  Article  Google Scholar 

  33. 33.

    Mbey JA, Hoppe S, Thomas F (2012) Cassava starch–kaolinite composite film: Effect of clay content and clay modification on film properties. Carbohydr Polym 88(1):213–222

    CAS  Article  Google Scholar 

  34. 34.

    Wasserbauer R, Biological deterioration of buildings ABF-Arch 2002

  35. 35.

    Bastioli C (Ed) (2005) Handbook of biodegradable polymers. iSmithers Rapra Publishing, Akron.

  36. 36.

    Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores Technol 98(1):130–134

    CAS  Article  Google Scholar 

  37. 37.

    Mbarki K, Fersi M, Louati I, Elleuch B, Sayari A (2019) Biodegradation study of PDLA/cellulose microfibres biocomposites by Pseudomonas aeruginosa. Environ Technol. https://doi.org/10.1080/09593330.2019.1643926

    Article  PubMed  Google Scholar 

  38. 38.

    Torres FG, Troncoso OP, Torres C, Díaz DA, Amaya E (2011) Biodegradability and mechanical properties of starch films from Andean crops. Int J Biol Macromol 48(4):603–606

    CAS  Article  Google Scholar 

Download references


This research was supported by an internal grant from Tomas Bata University in Zlin, No. IGA/FT/2018/009 and IGA/FT/2019/011.

Author information



Corresponding author

Correspondence to Markéta Julinová.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Julinová, M., Vaňharová, L., Jurča, M. et al. Effect of Different Fillers on the Biodegradation Rate of Thermoplastic Starch in Water and Soil Environments. J Polym Environ 28, 566–583 (2020). https://doi.org/10.1007/s10924-019-01624-7

Download citation


  • Biodegradation
  • Thermoplastic starch
  • Clay
  • Waste paper
  • Sludge