Skip to main content
Log in

Fabrication of Poly(lactic acid)/Silkworm Excrement Composite with Enhanced Crystallization, Toughness and Biodegradation Properties

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigated and analyzed the mechanical and thermal properties as well as biodegradability of bio-plastic Poly(lactic acid) (PLA) and PLA/silkworm excrement (PLA/SE) composites fabricated by injection molding. Differential scanning calorimetry (DSC) results demonstrated that SE enhanced the crystallization ability of PLA represented by the increased crystallinity. The tensile strength of PLA/SE composites did not enhance when adding SE due to SE particles became drawbacks while stretching as well as the lower tensile strength of SE than PLA. However, the impact strength of PLA/SE 10% was enhanced approximately 30.1%, comparing with neat-PLA. Biodegradation experiment showed that PLA/SE composites had faster and obvious disintegration in 7 weeks, especially PLA/SE 20% composite, which indicating SE enhanced the biodegradability of PLA. Additionally, neat-PLA and the PLA in PLA/SE composites can be fully biodegraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246

    Article  CAS  Google Scholar 

  2. Nampoothiri KM, Nair NR, John RP (2010) Bioresource Technol 101:8493

    Article  Google Scholar 

  3. Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) J Environ Polym Degrad 5(3):125

    CAS  Google Scholar 

  4. Lopes MS, Jardini AL, Filho RM (2012) Procedia Eng 42:1402

    Article  Google Scholar 

  5. Jiang L, Zhang J (2013) Biodegradable polymers and polymer blends. Handbook Biopolym Biodegrad Plastics. https://doi.org/10.1016/B978-1-4557-2834-3.00006-9

    Article  Google Scholar 

  6. Elduque A, Elduque D, Javierre C, Fernández Á, Santolaria J (2015) J Clean Prod 108:80

    Article  CAS  Google Scholar 

  7. Arrieta MP, López J, López D, Kenny JM, Peponi L (2016) Ind Crop Prod 93:290

    Article  CAS  Google Scholar 

  8. Colomines G, Domenek S, Ducruet V, Guinault A (2008) Int J Mater Form 1(1):607

    Article  Google Scholar 

  9. Huang Y, Zhang C, Pan Y, Zhou Y, Jiang L, Dan Y (2013) Polym Degrad Stabil 98:943

    Article  CAS  Google Scholar 

  10. Gardella L, Calabrese M, Monticelli O (2014) Colloid Polym Sci 292(9):2391

    Article  CAS  Google Scholar 

  11. Chu C, Li X, Yu W, Han L, Bai J, Xue F (2019) J Mater Sci 54(6):4701

    Article  CAS  Google Scholar 

  12. Simmons H, Kontopoulou M (2018) Polym Degrad Stabil 158:228

    Article  CAS  Google Scholar 

  13. Mikos AG (1994) Polymer 35:1068

    Article  CAS  Google Scholar 

  14. Corre YM, Maazouz A, Duchet J, Reignier J (2011) J Supercrit Fluid 58:177

    Article  CAS  Google Scholar 

  15. Matuana LM (2008) Bioresource Technol 99:3643

    Article  CAS  Google Scholar 

  16. Vimolmangkang S, Somkhanngoen C, Sukrong S (2013) Chiang Mai J Sci 41:97

    Google Scholar 

  17. Cai L, Shao H, Hu X, Zhang Y (2015) Acs Sustain Chem Eng 3:2551

    Article  CAS  Google Scholar 

  18. Lee SH, Wang S (2006) Compos Part A 37:80

    Article  CAS  Google Scholar 

  19. Lee HT, Lee DS (2002) Macromol Res 10(6):359

    Article  CAS  Google Scholar 

  20. Kim GM, Michler GH (1998) Polymer 39:5689

    Article  CAS  Google Scholar 

  21. Lin Y, Chan CM (2012) 3–Calcium carbonate nanocomposites, Advances in Polymer Nanocomposites

  22. Li MX, Kim SH, Choi SW, Goda K, Lee WI (2016) Compos B 96:248

    Article  CAS  Google Scholar 

  23. Huang A, Kharbas H, Ellingham T, Mi HY, Turng LS, Peng XF (2017) Polym Eng Sci 57:570

    CAS  Google Scholar 

  24. Huang A, Peng X, Turng LS (2018) Polymer 134:263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of National Taiwan University of Science and Technology; Taiwan Ministry of Education; Fujian university of technology; South China University of Technology; Wisconsin Institute for Discovery (WID), University of Wisconsin–Madison. Thanks to the help of Prof. Chao Chan Chang, and Prof. Lih-Sheng Turng.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An Huang or Chao Chan Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, QH., Peng, X., Fang, H. et al. Fabrication of Poly(lactic acid)/Silkworm Excrement Composite with Enhanced Crystallization, Toughness and Biodegradation Properties. J Polym Environ 28, 295–303 (2020). https://doi.org/10.1007/s10924-019-01595-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01595-9

Keywords

Navigation