Skip to main content

Advertisement

Log in

Review: Bio-polyethylene from Wood Wastes

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

There is a global trend of substitution of fossil fuels for renewable energy sources, which are preferred by reasons including sustainability, reduction of greenhouse gases that contribute to climate change, regional and social systems advancement, among others. This review is part of the studies carried out on the integral use of wood industrial wastes due to its low costs and high availability. A possible high-value product is ethylene, obtained by catalytic dehydration of second-generation bioethanol from lignocellulosic materials and which can be an effective alternative for the production of polymers such as polyethylene (PE), which is conventionally obtained from petroleum. Biobased polyethylene or biopolyethylene (BioPE) may potentially contribute to close a pine biorefinery scheme to obtain high-value products, using processes of low pollution and contributing to the global environmental balance. The process involves the following stages: pretreatment, enzymatic saccharification, fermentation, dehydration, and polymerization. This review includes the different processes for second generation (2G) bioethylene productions from pine wastes as an example and the technologies that can potentially be applied on an industrial scale for BioPE production, focusing on the catalytic dehydration of 2G bioethanol through the use of catalysts able to achieve high ethanol conversions and ethylene selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

PE:

Polyethylene

PVC:

Polyvinylchloride

EHY:

Enzymatic hydrolysis yield

EH:

Enzymatic hydrolysis

AQ:

Anthraquinone

SHF:

Hydrolysis and fermentation

SSF:

Simultaneous saccharification and fermentation

DMC:

Direct microbial conversion

HMF:

Hydroxymethylfurfural

PP:

Polypropylene

E1:

Mechanism of elimination reaction (unimolecular)

E2:

Mechanism of elimination reaction (bimolecular)

SN1:

Nucleophilic substitution reaction (unimolecular)

SN2:

Nucleophilic substitution reaction (bimolecular)

References

  1. Association of Plastics Manufacturers (APM) (2018) Report-An analysis of European plastics production, demand and waste data. www.epro-plasticsrecycling.org. Accessed 2 Oct 2019

  2. Ashter SA (2016) Introduction. Introduction to bioplastics engineering. Elsevier, Amsterdam, pp 1–17

    Google Scholar 

  3. Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. ChemBioEng Rev 4:75–91. https://doi.org/10.1002/cben.201600025

    Article  CAS  Google Scholar 

  4. Flieger M, Kantorová M, Prell A et al (2003) Biodegradable plastics from renewable sources. Rev Folia Microbiol 48:27–44. https://doi.org/10.1007/BF02931273

    Article  CAS  Google Scholar 

  5. Gowlett JAJ (2006) The early settlement of northern Europe: fire history in the context of climate change and the social brain. Comptes Rendus - Palevol 5:299–310. https://doi.org/10.1016/j.crpv.2005.10.008

    Article  Google Scholar 

  6. Binford LR, Ho CK (1985) Taphonomy at a distance: Zhoukoudian, “the cave home of Beijing man”? Curr Anthropol 26:413–442. https://doi.org/10.1086/203303

    Article  Google Scholar 

  7. Bozell JJ (2008) Feedstocks for the future - Biorefinery production of chemicals from renewable carbon. Clean - Soil Air, Water 36:641–647. https://doi.org/10.1002/clen.200800100

    Article  CAS  Google Scholar 

  8. Jakob M, Hilaire J (2014) Unburnable fossil-fuel reserves. Nature 517:150–152. https://doi.org/10.1038/517150a

    Article  CAS  Google Scholar 

  9. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  10. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  CAS  PubMed  Google Scholar 

  11. Vallejos ME, Kruyeniski J, Area MC (2017) Second-generation bioethanol from industrial wood waste of South American species. Biofuel Res J 4:654–667. https://doi.org/10.18331/BRJ2017.4.3.4

    Article  CAS  Google Scholar 

  12. Nova-Institute (2017) Report - Bioplastics market data. www.european-bioplastics.org/market. Accessed 2 Oct 2019. Berlin

  13. Alshammari A, Kalevaru VN, Bagabas A, Martin A (2016) Production of ethylene and its commercial importance in the global market. In: Al-Megren H (ed) Petrochemical catalyst materials, processes, and emerging technologies. Advances in Chemical and Materials Engineering (ACME), IGI Global, Pennsylvania, pp 82–115

    Chapter  Google Scholar 

  14. Rebsdat S, Mayer D (2012) Ethylene glycol. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a10

    Article  Google Scholar 

  15. Lewandowski S (2016) Report-Global Ethylene Market : Key Issues. https://ihsmarket.com. Accessed 2 Oct 2019

  16. Warren RT (2013) Global ethylene capacity: poised for major expansion. Oil Gas J 111:90–95

    Google Scholar 

  17. Fan D, Dai DJ, Wu HS (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials (Basel) 6:101–115. https://doi.org/10.3390/ma6010101

    Article  CAS  Google Scholar 

  18. McKechnie J, Pourbafrani M, Saville BA, MacLean HL (2015) Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel. Environ Res Lett 10:124018. https://doi.org/10.1088/1748-9326/10/12/124018

    Article  CAS  Google Scholar 

  19. Zacharopoulou V, Lemonidou A (2017) Olefins from biomass intermediates: a review. Catalysts 8:2. https://doi.org/10.3390/catal8010002

    Article  CAS  Google Scholar 

  20. Ramis G, Rossetti I, Trizpodi A, Compagnoni M (2017) Diluted bioethanol solutions for the production of hydrogen and ethylene. Chem Eng Trans 57:1663–1668. https://doi.org/10.3303/CET1757278

    Article  Google Scholar 

  21. Harsem P, Hackmann M (2013) Report-Green building blocks for biobased plastics. www.fbr.wur.nl. Accessed 2 Oct 2019

  22. Hettinga WG, Junginger HM, Dekker SC et al (2009) Understanding the reductions in US corn ethanol production costs: an experience curve approach. Energy Policy 37:190–203. https://doi.org/10.1016/j.enpol.2008.08.002

    Article  Google Scholar 

  23. Koizumi T (2014) Biofuels and food security: biofuel impact on food security in Brazil, Asia and major producing countries. Biofuels and food security. Springer, New York, pp 13–32

    Chapter  Google Scholar 

  24. Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84. https://doi.org/10.1080/15583720902834791

    Article  CAS  Google Scholar 

  25. IRENA (2015) Report-ID + D Para Las Tecnologías de energías renovables: cooperation en América Latina y el Caribe. www.irena.org. Accessed 2 Oct 2019

  26. Broeren M (2013) Report-Production of Bio-ethylene. www.iea-etsap.org

  27. Chen JM, Yu B, Wei YM (2018) Energy technology roadmap for ethylene industry in China. Appl Energy 224:160–174. https://doi.org/10.1016/j.apenergy.2018.04.051

    Article  CAS  Google Scholar 

  28. Yakovleva IS, Banzaraktsaeva SP, Ovchinnikova EV et al (2016) Catalytic dehydration of bioethanol to ethylene. Catal Ind 8:152–167. https://doi.org/10.1134/S2070050416020148

    Article  Google Scholar 

  29. Nova-Chemicals (2010) Report-A World-Class Petrochemical Complex. www.novachemicals.com. Accessed 2 Oct 2019

  30. Méndez A, Gorzycki FE, Rosa M (2016) Report-Informes de cadenas de valor

  31. Puma (2011) Report-Annual and Sustainability. São Paulo, Brazil

  32. Maity SK (2015) Opportunities, Recent Trends and Challenges of Integrated Biorefinery: part I Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew Sustain Energy Rev 43:1427–1445

    Article  CAS  Google Scholar 

  33. Martinz D, Quadros J (2008) Report-Compounding PVC with renewable materials. Brasil

  34. Azevedo L, Posen D, Griffin M, Matthews S (2015) Changing the renewable fuel standard to a renewable material standard: bioethylene case study. Enviromental Sci Technol 49:93–102. https://doi.org/10.1021/es503521r

    Article  CAS  Google Scholar 

  35. European-Bioplastics (2016) Report-Biobased plastics—fostering a resource efficient circular economy. www.european-bioplastics.org. Accessed 2 Oct 2019

  36. Brodin M, Vallejos M, Opedal MT et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664. https://doi.org/10.1016/j.jclepro.2017.05.209

    Article  CAS  Google Scholar 

  37. New-Plastics-Economy (2016) Report-The New Plastics Economy. www.ellenmacarthurfoundation.org

  38. Boehe DM (2011) Report-Braskem : the creation of a global-scale petrochemical company

  39. Melander AN, Qvint K (2016) Assessing the sustainability of first generation ethanol for bioethylene production. Chalmers University of Technology

  40. Raele R, Boaventura JMG, Fischmann AA, Sarturi G (2014) Scenarios for the second generation ethanol in Brazil. Technol Forecast Soc Change 87:205–223. https://doi.org/10.1016/j.techfore.2013.12.010

    Article  Google Scholar 

  41. Sjöström E (1993) The structure of wood. In: Sjöström E (ed) Wood chemistry, 2nd edn. Elsevier, Amsterdam, pp 1–20

    Google Scholar 

  42. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    Article  CAS  Google Scholar 

  43. Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy. https://doi.org/10.1016/j.enpol.2011.04.036

    Article  Google Scholar 

  44. Zhang M, Yu Y (2013) Dehydration of ethanol to ethylene. Ind Eng Chem Res 52:9505–9514. https://doi.org/10.1021/ie401157c

    Article  CAS  Google Scholar 

  45. Indufor (2018) Report-Global Market Analysis and Benchmarking Study Phase 1: Global Market Analysis. Indufor North America LLC, Washington & Auckland

  46. EBTP (2016) Borregaard—commercial plant in Sarpsborg. Eur Biofuels Technol Platf, Norway

    Google Scholar 

  47. Area MC, Vallejos ME, Bengoechea DI et al (2012) Biorrefinería a partir de residuos lignocelulósicos. Conversión de residuos a productos de alto valor. Editorial Académica Española, Saarbrücke

    Google Scholar 

  48. Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39:4222–4234. https://doi.org/10.1016/j.enpol.2011.04.036

    Article  Google Scholar 

  49. Bajpai P (2016) Structure of lignocellulosic biomass. In: Bajpai P (ed) Pretreatment of lignocellulosic biomass for biofuel production, 1st edn. Springer, Singapore, pp 8–12

    Chapter  Google Scholar 

  50. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37. https://doi.org/10.1385/ABAB:84-86:1-9:5

    Article  PubMed  Google Scholar 

  51. Zhu M, Zhu Z, Li X (2011) Bioconversion of paper sludge with low cellulosic content to ethanol by separate hydrolysis and fermentation. Afr J Biotechnol 10:15072–15083. https://doi.org/10.5897/AJB11.1644

    Article  CAS  Google Scholar 

  52. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. https://doi.org/10.1007/s10295-003-0049-x

    Article  CAS  PubMed  Google Scholar 

  53. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117. https://doi.org/10.1021/bp0340180

    Article  CAS  PubMed  Google Scholar 

  54. Kruyeniski J, Ferreira PJT, Carvalho MD et al (2019) Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis. Ind Crops Prod 130:528–536. https://doi.org/10.1016/j.indcrop.2018.12.075

    Article  CAS  Google Scholar 

  55. Stoffel RB, Felissia FE, Silva Curvelo AA et al (2014) Optimization of sequential alkaline–acid fractionation of pine sawdust for a biorefinery. Ind Crops Prod 61:160–168. https://doi.org/10.1016/j.indcrop.2014.06.047

    Article  CAS  Google Scholar 

  56. Kreuter J (1996) Nanoparticles and microparticles for drug and vaccine delivery. J Anat 189(Pt 3):503–505. https://doi.org/10.1002/bit

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mosier NS, Hendrickson R, Brewer M et al (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–97. https://doi.org/10.1385/ABAB:125:2:077

    Article  CAS  PubMed  Google Scholar 

  58. Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  59. Kruyeniski IJ (2017) Influencia del pretratamiento de residuos forestoindustriales sobre la producción de bioetanol. Tesis Doctoral, Universidad Nacional de Misiones

  60. Das P, Stoffel RB, Area MC, Ragauskas AJ (2019) Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass Bioenergy 120:350–358. https://doi.org/10.1016/j.biombioe.2018.11.029

    Article  CAS  Google Scholar 

  61. Yang B, Dai Z, Ding S-Y, Wyman CE (2014) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–449. https://doi.org/10.4155/bfs.11.116

    Article  CAS  Google Scholar 

  62. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  CAS  Google Scholar 

  63. Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. Arab B 12:1–21. https://doi.org/10.1199/tab.0169

    Article  Google Scholar 

  64. López-Miranda J, Soto-Cruz NO, Rutiaga-Quiñones OM et al (2009) Optimización del proceso de obtención enzimática de azúcares fermentables a partir de aserrín de pino. Rev Int Contam Ambient 25:95–102

    Google Scholar 

  65. Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345:965–970. https://doi.org/10.1016/j.carres.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  66. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24. https://doi.org/10.1016/S0168-1656(97)00073-4

    Article  CAS  PubMed  Google Scholar 

  67. Kim KH, Hong J (2001) Supercritical CO2pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144. https://doi.org/10.1016/S0960-8524(00)00147-4

    Article  CAS  PubMed  Google Scholar 

  68. Donaldson LA, Wong KKY, Mackie KL (1988) Ultrastructure of steam-exploded wood. Wood Sci Technol 22:103–114. https://doi.org/10.1007/BF00355846

    Article  CAS  Google Scholar 

  69. Wong KKY, Deverell KF, Mackie KL et al (1988) The relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31:447–456. https://doi.org/10.1002/bit.260310509

    Article  CAS  PubMed  Google Scholar 

  70. Stoffel RB, Neves PV, Felissia FE et al (2017) Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass Bioenergy 107:93–101. https://doi.org/10.1016/j.biombioe.2017.09.019

    Article  CAS  Google Scholar 

  71. Imlauer C, Vergara P, Area MC, Revilla E, Felissia F, Villar JC (2019) Fractionation of Pinus radiata wood by combination of steam explosion and organosolv delignification. Maderas-Cienc Tecnol 3:21

    Google Scholar 

  72. Lim W, Lee J (2013) Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood. Bioresour Technol 140:306–311. https://doi.org/10.1016/j.biortech.2013.04.103

    Article  CAS  PubMed  Google Scholar 

  73. Huang F, Ragauskas AJ (2012) Dilute H2SO4 and SO2 pretreatments of Loblolly pine wood residue for bioethanol production. Ind Biotechnol 8:22–30. https://doi.org/10.1089/ind.2011.0018

    Article  CAS  Google Scholar 

  74. Charles N (2002) Oxygen Delignification as a Pretreatment for the Enzymatic. The university of British Columbia

  75. Valenzuela R, Priebe X, Troncoso E et al (2016) Fiber modifications by organosolv catalyzed with H2SO4 improves the SSF of Pinus radiata. Ind Crop Prod 86:79–86. https://doi.org/10.1016/j.indcrop.2016.03.037

    Article  CAS  Google Scholar 

  76. Ximenes E, Kim Y, Mosier N et al (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60. https://doi.org/10.1016/j.enzmictec.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  77. Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  78. Gu H, Zhang J, Bao J (2014) Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour Technol 157:6–13. https://doi.org/10.1016/j.biortech.2014.01.060

    Article  CAS  PubMed  Google Scholar 

  79. Chu Q, Li X, Ma B et al (2012) Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Bioresour Technol 123:699–702. https://doi.org/10.1016/j.biortech.2012.07.118

    Article  CAS  PubMed  Google Scholar 

  80. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  81. Arora A, Martin EM, Pelkki MH, Carrier DJ (2013) Effect of formic acid and furfural on the enzymatic hydrolysis of cellulose powder and dilute acid-pretreated poplar hydrolysates. ACS Sustain Chem Eng 1:23–28. https://doi.org/10.1021/sc3000702

    Article  CAS  Google Scholar 

  82. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3

    Article  CAS  Google Scholar 

  83. Matano Y, Hasunuma T, Kondo A (2012) Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 108:128–133. https://doi.org/10.1016/j.biortech.2011.12.144

    Article  CAS  PubMed  Google Scholar 

  84. San Martín R, Perez C, Briones R (1995) Simultaneous production of ethanol and kraft pulp from pine (Pinus radiata) using steam explosion. Bioresour Technol 53:217–223. https://doi.org/10.1016/0960-8524(95)00056-K

    Article  Google Scholar 

  85. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146. https://doi.org/10.1016/j.cbpa.2006.02.035

    Article  CAS  PubMed  Google Scholar 

  86. Alshammari A, Kalevaru VN, Bagabas A, Martin A (2016) Production of Ethylene and its Commercial Importance in the Global Market

  87. Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002

    Article  CAS  Google Scholar 

  88. Cardona Alzate CA, Sánchez Toro OJ (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2111–2123. https://doi.org/10.1016/j.energy.2005.10.020

    Article  CAS  Google Scholar 

  89. Chen G, Li S, Jiao F, Yuan Q (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/g-Al2O3 catalysts in microchannel reactors. Catal Today 125:111–119. https://doi.org/10.1016/j.cattod.2007.01.071

    Article  CAS  Google Scholar 

  90. Ren T, Daniëls B, Patel MK, Blok K (2009) Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030-2050. Resour Conserv Recycl 53:653–663. https://doi.org/10.1016/j.resconrec.2009.04.016

    Article  Google Scholar 

  91. Galvita VV, Semin GL, Belyaev VD et al (2001) Synthesis gas production by steam reforming of ethanol. Appl Catal 220:123–127. https://doi.org/10.1016/S0926-860X(01)00708-6

    Article  CAS  Google Scholar 

  92. Tanabe K, Misono M, Ono Y, Hattori H (1990) Their catalytic properties. In: Tanabe K (ed) New solid acids and bases, 2nd. Elsevier, Amsterdam, p 364

    Google Scholar 

  93. Zheng D-Q, Wu X-C, Tao X-L et al (2011) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102:3020–3027. https://doi.org/10.1016/j.biortech.2010.09.122

    Article  CAS  PubMed  Google Scholar 

  94. Srilekha Yadav K, Naseeruddin S, Sai Prashanthi G et al (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102:6473–6478. https://doi.org/10.1016/j.biortech.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  95. Fu N, Peiris P, Markham J, Bavor J (2009) A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb Technol 45:210–217. https://doi.org/10.1016/j.enzmictec.2009.04.006

    Article  CAS  Google Scholar 

  96. Paysepar H (2018) Production of monomeric aromatics/phenolics from hydrolysis lignin (HL) by catalytic fast pyrolysis and hydrothermal liquefaction. Western Ontario

  97. Wu C-Y, Wu H-S (2017) Ethylene formation from ethanol dehydration using ZSM-5 catalyst. ACS Omega 2:4287–4296. https://doi.org/10.1021/acsomega.7b00680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145. https://doi.org/10.1016/j.biortech.2013.01.049

    Article  CAS  PubMed  Google Scholar 

  99. Noller H, Thomke K (1979) Transition states of catalytic dehydration and dehydrogenation of alcohols. J Mol Catal 6:375–392. https://doi.org/10.1016/0304-5102(79)85013-0

    Article  CAS  Google Scholar 

  100. Kruyeniski J, Felissia FE, Area MC (2017) Pretreatment soda-ethanol of pine and its influence on enzymatic hydrolysis. Rev Cienc y Tecnol 28:37–41

    Google Scholar 

  101. Smith MB, March J (2007) March’s advanced organic chemistry. Reactions, mechanisms, and structure, 6th edn. Wiley, Canada, pp 425–752

    Google Scholar 

  102. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  103. Hu Y, Zhan N, Dou C et al (2010) Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel. Biotechnol J 5:1186–1191. https://doi.org/10.1002/biot.201000139

    Article  CAS  PubMed  Google Scholar 

  104. Adkins H, Perkins PP (1925) Dehydration of alcohols over alumina. J Am Chem Soc 47:1163–1167. https://doi.org/10.1021/ja01681a036

    Article  CAS  Google Scholar 

  105. Phillips CB, Datta R (1997) Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions. Ind Eng Chem Res 36:4466–4475. https://doi.org/10.1021/ie9702542

    Article  CAS  Google Scholar 

  106. Qi J, Zhao T, Xu X et al (2010) Physicochemical properties and catalytic performance of a novel aluminosilicate composite zeolite for hydrocarbon cracking reaction. China Pet Process Petrochemical Technol 5:17–22

    Google Scholar 

  107. Isa M, Duncan C (2011) Patent WO2011087478. Reducing impurities in ethylene. 11

  108. V. C, N. T, T P et al (2014) Procede de Deshydratation de L’ Éthanol en Éthylene a Basse Consommation Énergétique. 31

  109. Area MC, Park SW (2017) Bio-productos y bio-materiales a partir de la biorrefinería de residuos agro y forestoindustriales. In: Area MC, Park SW (eds) Panorama de la industria de celulosa y papel y materiales lignocelulósicos 2016, 1st edn. Universidad Nacional de Misiones, Unam, pp 120–151

    Google Scholar 

  110. Muñoz M, Catrilaf G (2013) Estimación de parámetros cinéticos de Saccharomyces cerevisiae en sistema de fermentación Batch bajo distintas condiciones de crecimiento. Procesos Agroindustriales 1–11

  111. Walsh P, Jong E De, Higson A, et al (2012) Report-Bio-based Chemicals Value Added Products from Biorrefineries. Amsterdam

  112. Zhang Q, Zhang P, Pei ZJ, Wang D (2013) Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: analysis of inconsistent reports in the literature. Renew Energy 60:127–136. https://doi.org/10.1016/j.renene.2013.04.012

    Article  CAS  Google Scholar 

  113. Zhu JY, Pan X Jr, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857. https://doi.org/10.1007/s00253-010-2654-8

    Article  CAS  PubMed  Google Scholar 

  114. Kokossis AC (2014) Report-design of integrated biorefineries. Elsevier, Greece

    Google Scholar 

  115. Corradini E, Ito EN, Marconcini JM et al (2009) Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber. Polym Test 28:183–187. https://doi.org/10.1016/j.polymertesting.2008.11.014

    Article  CAS  Google Scholar 

  116. Haro P, Ollero P, Trippe F (2013) Technoeconomic assessment of potential processes for bio-ethylene production. Fuel Process Technol 114:35–48. https://doi.org/10.1016/j.fuproc.2013.03.024

    Article  CAS  Google Scholar 

  117. Cai L, Ma Y, Ma X, Lv J (2016) Bioresource technology improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments. Bioresour Technol 212:42–46. https://doi.org/10.1016/j.biortech.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  118. Nitzsche R, Budzinski M, Gröngröft A (2016) Bioresource technology techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel. Bioresour Technol 200:928–939. https://doi.org/10.1016/j.biortech.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  119. Zhang B, Shahbazi A (2011) Recent developments in pretreatment technologies for production of lignocellulosic biofuels. J Pet Environ Biotechnol. https://doi.org/10.4172/2157-7463.1000108

    Article  Google Scholar 

  120. Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24. https://doi.org/10.1016/j.biombioe.2012.05.008

    Article  CAS  Google Scholar 

  121. Braskem (2017) Informe Anual 2017. 104

  122. Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res 1:205–214. https://doi.org/10.1007/s12155-008-9021-y

    Article  Google Scholar 

  123. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kuciel S, Jakubowska P, Kuz P (2014) Composites: part B A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos Part B 64:72–77. https://doi.org/10.1016/j.compositesb.2014.03.026

    Article  CAS  Google Scholar 

  125. Zhao C, Qin H, Gong F et al (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189. https://doi.org/10.1016/j.polymdegradstab.2004.08.005

    Article  CAS  Google Scholar 

  126. Kubík Ľ, Zeman S (2014) Mechanical properties of polyethylene foils Mechanické vlastnosti polyetylénových fólií. J Cent Eur Agric 15:138–145. https://doi.org/10.5513/JCEA01/15.1.1425

    Article  Google Scholar 

  127. Morschbacker A, Eduardo C, Campos S, et al (2010) Chapter 7

  128. Gnanavel G, Thirumarimurugan M, Valli MJ (2016) Biodegradation of oxo polyethylene: an approach using soil compost degraders. Int J Adv Eng Technol 7:140–144

    Google Scholar 

  129. Mohan SK, Suresh B (2015) Studies on biodegradation of plastics by aspergillus Sp. Isolated from dye effluent. Indo Am J Pharm Sci 2:1639

    Google Scholar 

  130. Tokiwa Y, Calabia B, Ugwu C, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scott G (1999) Polymers and the enviroment. Royal Society of Chemistry, Great Britain

    Google Scholar 

  132. Axelsson L, Franzén M, Ostwald M et al (2017) Sustainability assessment of glucose production technologies from highly recalcitrant softwood including scavengers. Biofuels Bioprod Biorefining. https://doi.org/10.1002/bbb

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the National University of Missions, the National Scientific and Technical Research Council (CONICET), and the ValBio-3D project Grant ELAC2015/T03-0715 Valorization of residual biomass for advanced 3D materials (Ministry of Science, Technology and Innovation Production of Argentina, and Research Council of Norway, Grant No. 271054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Area.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendieta, C.M., Vallejos, M.E., Felissia, F.E. et al. Review: Bio-polyethylene from Wood Wastes. J Polym Environ 28, 1–16 (2020). https://doi.org/10.1007/s10924-019-01582-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01582-0

Keywords

Navigation