Abstract
There is a global trend of substitution of fossil fuels for renewable energy sources, which are preferred by reasons including sustainability, reduction of greenhouse gases that contribute to climate change, regional and social systems advancement, among others. This review is part of the studies carried out on the integral use of wood industrial wastes due to its low costs and high availability. A possible high-value product is ethylene, obtained by catalytic dehydration of second-generation bioethanol from lignocellulosic materials and which can be an effective alternative for the production of polymers such as polyethylene (PE), which is conventionally obtained from petroleum. Biobased polyethylene or biopolyethylene (BioPE) may potentially contribute to close a pine biorefinery scheme to obtain high-value products, using processes of low pollution and contributing to the global environmental balance. The process involves the following stages: pretreatment, enzymatic saccharification, fermentation, dehydration, and polymerization. This review includes the different processes for second generation (2G) bioethylene productions from pine wastes as an example and the technologies that can potentially be applied on an industrial scale for BioPE production, focusing on the catalytic dehydration of 2G bioethanol through the use of catalysts able to achieve high ethanol conversions and ethylene selectivity.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- PE:
-
Polyethylene
- PVC:
-
Polyvinylchloride
- EHY:
-
Enzymatic hydrolysis yield
- EH:
-
Enzymatic hydrolysis
- AQ:
-
Anthraquinone
- SHF:
-
Hydrolysis and fermentation
- SSF:
-
Simultaneous saccharification and fermentation
- DMC:
-
Direct microbial conversion
- HMF:
-
Hydroxymethylfurfural
- PP:
-
Polypropylene
- E1:
-
Mechanism of elimination reaction (unimolecular)
- E2:
-
Mechanism of elimination reaction (bimolecular)
- SN1:
-
Nucleophilic substitution reaction (unimolecular)
- SN2:
-
Nucleophilic substitution reaction (bimolecular)
References
Association of Plastics Manufacturers (APM) (2018) Report-An analysis of European plastics production, demand and waste data. www.epro-plasticsrecycling.org. Accessed 2 Oct 2019
Ashter SA (2016) Introduction. Introduction to bioplastics engineering. Elsevier, Amsterdam, pp 1–17
Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. ChemBioEng Rev 4:75–91. https://doi.org/10.1002/cben.201600025
Flieger M, Kantorová M, Prell A et al (2003) Biodegradable plastics from renewable sources. Rev Folia Microbiol 48:27–44. https://doi.org/10.1007/BF02931273
Gowlett JAJ (2006) The early settlement of northern Europe: fire history in the context of climate change and the social brain. Comptes Rendus - Palevol 5:299–310. https://doi.org/10.1016/j.crpv.2005.10.008
Binford LR, Ho CK (1985) Taphonomy at a distance: Zhoukoudian, “the cave home of Beijing man”? Curr Anthropol 26:413–442. https://doi.org/10.1086/203303
Bozell JJ (2008) Feedstocks for the future - Biorefinery production of chemicals from renewable carbon. Clean - Soil Air, Water 36:641–647. https://doi.org/10.1002/clen.200800100
Jakob M, Hilaire J (2014) Unburnable fossil-fuel reserves. Nature 517:150–152. https://doi.org/10.1038/517150a
Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d
McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3
Vallejos ME, Kruyeniski J, Area MC (2017) Second-generation bioethanol from industrial wood waste of South American species. Biofuel Res J 4:654–667. https://doi.org/10.18331/BRJ2017.4.3.4
Nova-Institute (2017) Report - Bioplastics market data. www.european-bioplastics.org/market. Accessed 2 Oct 2019. Berlin
Alshammari A, Kalevaru VN, Bagabas A, Martin A (2016) Production of ethylene and its commercial importance in the global market. In: Al-Megren H (ed) Petrochemical catalyst materials, processes, and emerging technologies. Advances in Chemical and Materials Engineering (ACME), IGI Global, Pennsylvania, pp 82–115
Rebsdat S, Mayer D (2012) Ethylene glycol. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a10
Lewandowski S (2016) Report-Global Ethylene Market : Key Issues. https://ihsmarket.com. Accessed 2 Oct 2019
Warren RT (2013) Global ethylene capacity: poised for major expansion. Oil Gas J 111:90–95
Fan D, Dai DJ, Wu HS (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials (Basel) 6:101–115. https://doi.org/10.3390/ma6010101
McKechnie J, Pourbafrani M, Saville BA, MacLean HL (2015) Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel. Environ Res Lett 10:124018. https://doi.org/10.1088/1748-9326/10/12/124018
Zacharopoulou V, Lemonidou A (2017) Olefins from biomass intermediates: a review. Catalysts 8:2. https://doi.org/10.3390/catal8010002
Ramis G, Rossetti I, Trizpodi A, Compagnoni M (2017) Diluted bioethanol solutions for the production of hydrogen and ethylene. Chem Eng Trans 57:1663–1668. https://doi.org/10.3303/CET1757278
Harsem P, Hackmann M (2013) Report-Green building blocks for biobased plastics. www.fbr.wur.nl. Accessed 2 Oct 2019
Hettinga WG, Junginger HM, Dekker SC et al (2009) Understanding the reductions in US corn ethanol production costs: an experience curve approach. Energy Policy 37:190–203. https://doi.org/10.1016/j.enpol.2008.08.002
Koizumi T (2014) Biofuels and food security: biofuel impact on food security in Brazil, Asia and major producing countries. Biofuels and food security. Springer, New York, pp 13–32
Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84. https://doi.org/10.1080/15583720902834791
IRENA (2015) Report-ID + D Para Las Tecnologías de energías renovables: cooperation en América Latina y el Caribe. www.irena.org. Accessed 2 Oct 2019
Broeren M (2013) Report-Production of Bio-ethylene. www.iea-etsap.org
Chen JM, Yu B, Wei YM (2018) Energy technology roadmap for ethylene industry in China. Appl Energy 224:160–174. https://doi.org/10.1016/j.apenergy.2018.04.051
Yakovleva IS, Banzaraktsaeva SP, Ovchinnikova EV et al (2016) Catalytic dehydration of bioethanol to ethylene. Catal Ind 8:152–167. https://doi.org/10.1134/S2070050416020148
Nova-Chemicals (2010) Report-A World-Class Petrochemical Complex. www.novachemicals.com. Accessed 2 Oct 2019
Méndez A, Gorzycki FE, Rosa M (2016) Report-Informes de cadenas de valor
Puma (2011) Report-Annual and Sustainability. São Paulo, Brazil
Maity SK (2015) Opportunities, Recent Trends and Challenges of Integrated Biorefinery: part I Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew Sustain Energy Rev 43:1427–1445
Martinz D, Quadros J (2008) Report-Compounding PVC with renewable materials. Brasil
Azevedo L, Posen D, Griffin M, Matthews S (2015) Changing the renewable fuel standard to a renewable material standard: bioethylene case study. Enviromental Sci Technol 49:93–102. https://doi.org/10.1021/es503521r
European-Bioplastics (2016) Report-Biobased plastics—fostering a resource efficient circular economy. www.european-bioplastics.org. Accessed 2 Oct 2019
Brodin M, Vallejos M, Opedal MT et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664. https://doi.org/10.1016/j.jclepro.2017.05.209
New-Plastics-Economy (2016) Report-The New Plastics Economy. www.ellenmacarthurfoundation.org
Boehe DM (2011) Report-Braskem : the creation of a global-scale petrochemical company
Melander AN, Qvint K (2016) Assessing the sustainability of first generation ethanol for bioethylene production. Chalmers University of Technology
Raele R, Boaventura JMG, Fischmann AA, Sarturi G (2014) Scenarios for the second generation ethanol in Brazil. Technol Forecast Soc Change 87:205–223. https://doi.org/10.1016/j.techfore.2013.12.010
Sjöström E (1993) The structure of wood. In: Sjöström E (ed) Wood chemistry, 2nd edn. Elsevier, Amsterdam, pp 1–20
Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467. https://doi.org/10.1016/j.pecs.2012.03.002
Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy. https://doi.org/10.1016/j.enpol.2011.04.036
Zhang M, Yu Y (2013) Dehydration of ethanol to ethylene. Ind Eng Chem Res 52:9505–9514. https://doi.org/10.1021/ie401157c
Indufor (2018) Report-Global Market Analysis and Benchmarking Study Phase 1: Global Market Analysis. Indufor North America LLC, Washington & Auckland
EBTP (2016) Borregaard—commercial plant in Sarpsborg. Eur Biofuels Technol Platf, Norway
Area MC, Vallejos ME, Bengoechea DI et al (2012) Biorrefinería a partir de residuos lignocelulósicos. Conversión de residuos a productos de alto valor. Editorial Académica Española, Saarbrücke
Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39:4222–4234. https://doi.org/10.1016/j.enpol.2011.04.036
Bajpai P (2016) Structure of lignocellulosic biomass. In: Bajpai P (ed) Pretreatment of lignocellulosic biomass for biofuel production, 1st edn. Springer, Singapore, pp 8–12
Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37. https://doi.org/10.1385/ABAB:84-86:1-9:5
Zhu M, Zhu Z, Li X (2011) Bioconversion of paper sludge with low cellulosic content to ethanol by separate hydrolysis and fermentation. Afr J Biotechnol 10:15072–15083. https://doi.org/10.5897/AJB11.1644
Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. https://doi.org/10.1007/s10295-003-0049-x
Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117. https://doi.org/10.1021/bp0340180
Kruyeniski J, Ferreira PJT, Carvalho MD et al (2019) Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis. Ind Crops Prod 130:528–536. https://doi.org/10.1016/j.indcrop.2018.12.075
Stoffel RB, Felissia FE, Silva Curvelo AA et al (2014) Optimization of sequential alkaline–acid fractionation of pine sawdust for a biorefinery. Ind Crops Prod 61:160–168. https://doi.org/10.1016/j.indcrop.2014.06.047
Kreuter J (1996) Nanoparticles and microparticles for drug and vaccine delivery. J Anat 189(Pt 3):503–505. https://doi.org/10.1002/bit
Mosier NS, Hendrickson R, Brewer M et al (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–97. https://doi.org/10.1385/ABAB:125:2:077
Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025
Kruyeniski IJ (2017) Influencia del pretratamiento de residuos forestoindustriales sobre la producción de bioetanol. Tesis Doctoral, Universidad Nacional de Misiones
Das P, Stoffel RB, Area MC, Ragauskas AJ (2019) Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass Bioenergy 120:350–358. https://doi.org/10.1016/j.biombioe.2018.11.029
Yang B, Dai Z, Ding S-Y, Wyman CE (2014) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–449. https://doi.org/10.4155/bfs.11.116
Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033
Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. Arab B 12:1–21. https://doi.org/10.1199/tab.0169
López-Miranda J, Soto-Cruz NO, Rutiaga-Quiñones OM et al (2009) Optimización del proceso de obtención enzimática de azúcares fermentables a partir de aserrín de pino. Rev Int Contam Ambient 25:95–102
Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345:965–970. https://doi.org/10.1016/j.carres.2010.02.010
Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24. https://doi.org/10.1016/S0168-1656(97)00073-4
Kim KH, Hong J (2001) Supercritical CO2pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144. https://doi.org/10.1016/S0960-8524(00)00147-4
Donaldson LA, Wong KKY, Mackie KL (1988) Ultrastructure of steam-exploded wood. Wood Sci Technol 22:103–114. https://doi.org/10.1007/BF00355846
Wong KKY, Deverell KF, Mackie KL et al (1988) The relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31:447–456. https://doi.org/10.1002/bit.260310509
Stoffel RB, Neves PV, Felissia FE et al (2017) Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass Bioenergy 107:93–101. https://doi.org/10.1016/j.biombioe.2017.09.019
Imlauer C, Vergara P, Area MC, Revilla E, Felissia F, Villar JC (2019) Fractionation of Pinus radiata wood by combination of steam explosion and organosolv delignification. Maderas-Cienc Tecnol 3:21
Lim W, Lee J (2013) Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood. Bioresour Technol 140:306–311. https://doi.org/10.1016/j.biortech.2013.04.103
Huang F, Ragauskas AJ (2012) Dilute H2SO4 and SO2 pretreatments of Loblolly pine wood residue for bioethanol production. Ind Biotechnol 8:22–30. https://doi.org/10.1089/ind.2011.0018
Charles N (2002) Oxygen Delignification as a Pretreatment for the Enzymatic. The university of British Columbia
Valenzuela R, Priebe X, Troncoso E et al (2016) Fiber modifications by organosolv catalyzed with H2SO4 improves the SSF of Pinus radiata. Ind Crop Prod 86:79–86. https://doi.org/10.1016/j.indcrop.2016.03.037
Ximenes E, Kim Y, Mosier N et al (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60. https://doi.org/10.1016/j.enzmictec.2010.09.006
Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556. https://doi.org/10.1016/j.tibtech.2006.10.004
Gu H, Zhang J, Bao J (2014) Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour Technol 157:6–13. https://doi.org/10.1016/j.biortech.2014.01.060
Chu Q, Li X, Ma B et al (2012) Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Bioresour Technol 123:699–702. https://doi.org/10.1016/j.biortech.2012.07.118
Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875. https://doi.org/10.1016/j.enconman.2010.08.013
Arora A, Martin EM, Pelkki MH, Carrier DJ (2013) Effect of formic acid and furfural on the enzymatic hydrolysis of cellulose powder and dilute acid-pretreated poplar hydrolysates. ACS Sustain Chem Eng 1:23–28. https://doi.org/10.1021/sc3000702
Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3
Matano Y, Hasunuma T, Kondo A (2012) Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 108:128–133. https://doi.org/10.1016/j.biortech.2011.12.144
San Martín R, Perez C, Briones R (1995) Simultaneous production of ethanol and kraft pulp from pine (Pinus radiata) using steam explosion. Bioresour Technol 53:217–223. https://doi.org/10.1016/0960-8524(95)00056-K
Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146. https://doi.org/10.1016/j.cbpa.2006.02.035
Alshammari A, Kalevaru VN, Bagabas A, Martin A (2016) Production of Ethylene and its Commercial Importance in the Global Market
Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002
Cardona Alzate CA, Sánchez Toro OJ (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2111–2123. https://doi.org/10.1016/j.energy.2005.10.020
Chen G, Li S, Jiao F, Yuan Q (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/g-Al2O3 catalysts in microchannel reactors. Catal Today 125:111–119. https://doi.org/10.1016/j.cattod.2007.01.071
Ren T, Daniëls B, Patel MK, Blok K (2009) Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030-2050. Resour Conserv Recycl 53:653–663. https://doi.org/10.1016/j.resconrec.2009.04.016
Galvita VV, Semin GL, Belyaev VD et al (2001) Synthesis gas production by steam reforming of ethanol. Appl Catal 220:123–127. https://doi.org/10.1016/S0926-860X(01)00708-6
Tanabe K, Misono M, Ono Y, Hattori H (1990) Their catalytic properties. In: Tanabe K (ed) New solid acids and bases, 2nd. Elsevier, Amsterdam, p 364
Zheng D-Q, Wu X-C, Tao X-L et al (2011) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102:3020–3027. https://doi.org/10.1016/j.biortech.2010.09.122
Srilekha Yadav K, Naseeruddin S, Sai Prashanthi G et al (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102:6473–6478. https://doi.org/10.1016/j.biortech.2011.03.019
Fu N, Peiris P, Markham J, Bavor J (2009) A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb Technol 45:210–217. https://doi.org/10.1016/j.enzmictec.2009.04.006
Paysepar H (2018) Production of monomeric aromatics/phenolics from hydrolysis lignin (HL) by catalytic fast pyrolysis and hydrothermal liquefaction. Western Ontario
Wu C-Y, Wu H-S (2017) Ethylene formation from ethanol dehydration using ZSM-5 catalyst. ACS Omega 2:4287–4296. https://doi.org/10.1021/acsomega.7b00680
Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145. https://doi.org/10.1016/j.biortech.2013.01.049
Noller H, Thomke K (1979) Transition states of catalytic dehydration and dehydrogenation of alcohols. J Mol Catal 6:375–392. https://doi.org/10.1016/0304-5102(79)85013-0
Kruyeniski J, Felissia FE, Area MC (2017) Pretreatment soda-ethanol of pine and its influence on enzymatic hydrolysis. Rev Cienc y Tecnol 28:37–41
Smith MB, March J (2007) March’s advanced organic chemistry. Reactions, mechanisms, and structure, 6th edn. Wiley, Canada, pp 425–752
Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7
Hu Y, Zhan N, Dou C et al (2010) Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel. Biotechnol J 5:1186–1191. https://doi.org/10.1002/biot.201000139
Adkins H, Perkins PP (1925) Dehydration of alcohols over alumina. J Am Chem Soc 47:1163–1167. https://doi.org/10.1021/ja01681a036
Phillips CB, Datta R (1997) Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions. Ind Eng Chem Res 36:4466–4475. https://doi.org/10.1021/ie9702542
Qi J, Zhao T, Xu X et al (2010) Physicochemical properties and catalytic performance of a novel aluminosilicate composite zeolite for hydrocarbon cracking reaction. China Pet Process Petrochemical Technol 5:17–22
Isa M, Duncan C (2011) Patent WO2011087478. Reducing impurities in ethylene. 11
V. C, N. T, T P et al (2014) Procede de Deshydratation de L’ Éthanol en Éthylene a Basse Consommation Énergétique. 31
Area MC, Park SW (2017) Bio-productos y bio-materiales a partir de la biorrefinería de residuos agro y forestoindustriales. In: Area MC, Park SW (eds) Panorama de la industria de celulosa y papel y materiales lignocelulósicos 2016, 1st edn. Universidad Nacional de Misiones, Unam, pp 120–151
Muñoz M, Catrilaf G (2013) Estimación de parámetros cinéticos de Saccharomyces cerevisiae en sistema de fermentación Batch bajo distintas condiciones de crecimiento. Procesos Agroindustriales 1–11
Walsh P, Jong E De, Higson A, et al (2012) Report-Bio-based Chemicals Value Added Products from Biorrefineries. Amsterdam
Zhang Q, Zhang P, Pei ZJ, Wang D (2013) Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: analysis of inconsistent reports in the literature. Renew Energy 60:127–136. https://doi.org/10.1016/j.renene.2013.04.012
Zhu JY, Pan X Jr, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857. https://doi.org/10.1007/s00253-010-2654-8
Kokossis AC (2014) Report-design of integrated biorefineries. Elsevier, Greece
Corradini E, Ito EN, Marconcini JM et al (2009) Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber. Polym Test 28:183–187. https://doi.org/10.1016/j.polymertesting.2008.11.014
Haro P, Ollero P, Trippe F (2013) Technoeconomic assessment of potential processes for bio-ethylene production. Fuel Process Technol 114:35–48. https://doi.org/10.1016/j.fuproc.2013.03.024
Cai L, Ma Y, Ma X, Lv J (2016) Bioresource technology improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments. Bioresour Technol 212:42–46. https://doi.org/10.1016/j.biortech.2016.04.012
Nitzsche R, Budzinski M, Gröngröft A (2016) Bioresource technology techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel. Bioresour Technol 200:928–939. https://doi.org/10.1016/j.biortech.2015.11.008
Zhang B, Shahbazi A (2011) Recent developments in pretreatment technologies for production of lignocellulosic biofuels. J Pet Environ Biotechnol. https://doi.org/10.4172/2157-7463.1000108
Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24. https://doi.org/10.1016/j.biombioe.2012.05.008
Braskem (2017) Informe Anual 2017. 104
Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res 1:205–214. https://doi.org/10.1007/s12155-008-9021-y
Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8
Kuciel S, Jakubowska P, Kuz P (2014) Composites: part B A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos Part B 64:72–77. https://doi.org/10.1016/j.compositesb.2014.03.026
Zhao C, Qin H, Gong F et al (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189. https://doi.org/10.1016/j.polymdegradstab.2004.08.005
Kubík Ľ, Zeman S (2014) Mechanical properties of polyethylene foils Mechanické vlastnosti polyetylénových fólií. J Cent Eur Agric 15:138–145. https://doi.org/10.5513/JCEA01/15.1.1425
Morschbacker A, Eduardo C, Campos S, et al (2010) Chapter 7
Gnanavel G, Thirumarimurugan M, Valli MJ (2016) Biodegradation of oxo polyethylene: an approach using soil compost degraders. Int J Adv Eng Technol 7:140–144
Mohan SK, Suresh B (2015) Studies on biodegradation of plastics by aspergillus Sp. Isolated from dye effluent. Indo Am J Pharm Sci 2:1639
Tokiwa Y, Calabia B, Ugwu C, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722
Scott G (1999) Polymers and the enviroment. Royal Society of Chemistry, Great Britain
Axelsson L, Franzén M, Ostwald M et al (2017) Sustainability assessment of glucose production technologies from highly recalcitrant softwood including scavengers. Biofuels Bioprod Biorefining. https://doi.org/10.1002/bbb
Acknowledgements
This work has been funded by the National University of Missions, the National Scientific and Technical Research Council (CONICET), and the ValBio-3D project Grant ELAC2015/T03-0715 Valorization of residual biomass for advanced 3D materials (Ministry of Science, Technology and Innovation Production of Argentina, and Research Council of Norway, Grant No. 271054).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mendieta, C.M., Vallejos, M.E., Felissia, F.E. et al. Review: Bio-polyethylene from Wood Wastes. J Polym Environ 28, 1–16 (2020). https://doi.org/10.1007/s10924-019-01582-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-019-01582-0