Skip to main content

Mechanical, Fire Retardant, Water Absorption and Soil Biodegradation Properties of Poly(3-hydroxy-butyrate-co-3-valerate) Nanofilms

Abstract

Biopolymers provide potential substitution to synthetic polymers derived from scarce petroleum materials which are not environmental friendly and biodegradable. However, there exists challenging or unanswered questions for biopolymers to be used in biomedical, film packaging, automobile, construction and commercial industries such as their mechanical performance, thermal and fire retardancy, and durability when exposed to water. In this study, we investigated one such potential biopolymer, poly(3-hydroxy-butyrate-co-3-valerate) (PHBV) for the aforementioned properties. At first, 0–15 wt% halloysite nanotubes (HNTs) was dispersed in PHBV polymer using ultrasonication process in presence of chloroform solvent. The solvent was then evaporated and PHBV/HNTs films were prepared by solution casting method. PHBV films without HNTs (neat) were also prepared for baseline comparison. Thermogravimetric analysis (TGA) and tensile tests were then performed to study the thermal and mechanical properties of these films. The horizontal burning test (HBT) was also carried out to investigate the fire retardancy behavior. Finally, the water absorption and soil biodegradability behavior of these composites were investigated by submerging the films in water and Alabama soil conditions. PHBV films with 3 wt% loading showed optimum enhancement in thermal stability and tensile properties. In contrast, films with 10–15 wt% HNTs loading showed superior fire-retardancy, better water resistance and faster soil degradation over neat counterpart.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

References

  1. Coates GW, Hillmyer MA (2009) A virtual issue of macromolecules: “polymers from renewable resources”. Macromolecules 42(21):7987–7989

    Article  CAS  Google Scholar 

  2. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  3. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6(1):1–8

    Article  CAS  Google Scholar 

  4. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  5. Doi Y, Kanesawa Y, Kunioka M (1990) Biodegradation of microbial copolyesters: poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 23:26–31

    Article  CAS  Google Scholar 

  6. Wang S, Song C, Chen G, Guo T, Liu J, Zhang B, Takeuchi S (2005) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87:69–76

    Article  CAS  Google Scholar 

  7. Huang X, Netravali AN (2007) Characterization of flax yarn and flax fabric reinforced nano-clay modified soy protein resin composites. Compos Sci Technol 67:2005–2014

    Article  CAS  Google Scholar 

  8. Chen JS, Poliks MD, Ober CK, Zhang Y, Wiesner U, Giannelis EP (2002) Study of the interlayer expansion mechanism and thermal-mechanical properties of surface-initiated epoxy nanocomposites. Polymer 43:4895–4904

    Article  CAS  Google Scholar 

  9. Kausch HH, Michler GH (2007) Effect of nanoparticle size and size-distribution on mechanical behavior of filled amorphous thermoplastic polymers. J Appl Polym Sci 105:2577–2587

    Article  CAS  Google Scholar 

  10. Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751

    Article  CAS  Google Scholar 

  11. Bordes P, Hablot E, Pollet E, Avérous L (2009) Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polym Degrad Stab 94(5):789–796

    Article  CAS  Google Scholar 

  12. Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751

    Article  CAS  Google Scholar 

  13. Zainuddin S, Fahim A, Shoieb S, Farooq S, Hosur MV, Li D (2016) Morphological and mechanical behavior of chemically treated jute-PHBV bio-nanocomposites reinforced with silane grafted halloysite nanotubes. J Appl Polym Sci 133:43994

    Article  CAS  Google Scholar 

  14. Du ML, Guo BC, Lei YD, Liu MX, Jia DM (2008) Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49:4871–4876

    Article  CAS  Google Scholar 

  15. Rooj S, Das A, Thakur V, Mahaling RN, Bhowmick AK, Heingrich G (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31(4):2151–2156

    Article  CAS  Google Scholar 

  16. Guimaraes L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114(26):11358–11363

    Article  CAS  Google Scholar 

  17. Kashiwagi T (2005) Flammability of nanocomposites—effects of the shape of nanoparticles. In: Le Bras M, Wilkie CA, Bourbigot S, Duquesne S, Jama C (eds) Fire retardancy of polymers. Royal Society of Chemistry, Cambridge, pp 81–99

    Google Scholar 

  18. Marney DCO, Russell LJ, Wu DY, Nguyen T, Cramm D, Rigopoulos N, Wright N, Greaves M (2008) The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab 93:1971–1978

    Article  CAS  Google Scholar 

  19. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  20. Qin H, Su Q, Zhang S, Zhao B, Yang M (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer 44:7533–7538

    Article  CAS  Google Scholar 

  21. Gorrasi G, Tortora M, Vittoria V, Galli G (2002) Barrier properties of polymer/clay nanocomposites. J Polym Sci Part B Polym Phys 40:18–24

    Article  CAS  Google Scholar 

  22. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94(10):1646–1655

    Article  CAS  Google Scholar 

  23. Harun-or-Rashid MD, Saifur Rahaman MD, Kabir SE, Khan MA (2016) Effect of hydrochloric acid on the properties of biodegradable packaging materials of carboxymethylcellulose/poly(vinyl alcohol) blends. J Appl Polym Sci. https://doi.org/10.1002/app.42870

    Article  Google Scholar 

  24. Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater Sci Process 88:391–395

    Article  CAS  Google Scholar 

  25. Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J 42(6):1362–1369

    Article  CAS  Google Scholar 

  26. Lecouvet B, Gutierrez JG, Sclavons M et al (2011) Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab 96(2):226–235

    Article  CAS  Google Scholar 

  27. Somaiah Chowdary M, Niranjan Kumar MSR (2015) Effect of nanoclay on the mechanical properties of polyester and S-glass fiber (Al). Int J Adv Sci Technol 74:35–42

    Article  Google Scholar 

  28. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62:1327–1340

    Article  CAS  Google Scholar 

  29. Guo Z, Liang X, Pereira T, Scaffaro R, Hahn HT (2007) CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos Sci Technol 67:2036–2044

    Article  CAS  Google Scholar 

  30. Alhuthali A, Low IM (2013) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48:4260–4273

    Article  CAS  Google Scholar 

  31. Paul M-A, Alexandre M, Degée P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44(2):443–450

    Article  CAS  Google Scholar 

  32. Vyazovkin S, Dranca I, Fan X, Advincula R (2004) Kinetics of the thermal and thermo-oxidative degradation of a polystyrene-clay nanocomposite. Macromol Rapid Comun 25(3):498–503

    Article  CAS  Google Scholar 

  33. Wang L, He X, Wilkie CA (2010) The utility of nanocomposites in fire retardancy. Materials 3(9):4580–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith ME, Neal G, Trigg MB, Drennan J (1993) Structural characterization of the thermal transformation of halloysite by solid state NMR. Appl Mag Res 4:157–170

    Article  CAS  Google Scholar 

  35. Li P, Zheng Y, Li M, Fan W, Shi T, Wang Y, Zhang A, Wang J (2016) Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Composites Part A 81:172–181

    Article  CAS  Google Scholar 

  36. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683

    Article  CAS  Google Scholar 

  37. Kim J-K, Hu C, Woo RSC, Sham M-L (2005) Moisture barrier characteristics of organoclay–epoxy nanocomposites. Compos Sci Technol 65(5):805–813

    Article  CAS  Google Scholar 

  38. Li S, Girard A, Garreau H, Vert M (2001) Enzymatic degradation of polylactide ster-ocopolymers with predominant d-lactyl contents. Polym Degrad Stab 71:61–67

    Article  CAS  Google Scholar 

  39. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138

    Article  CAS  Google Scholar 

  40. Puglia D, Fortunati E, D’Amico DA, Manfredi LB, Cyras VP, Kenny JM (2014) Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polym Degrad Stab 99:127–135

    Article  CAS  Google Scholar 

  41. Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G (2010) Biodegradation trend of poly (ε-caprolactone) and nanocomposites. Mater Sci Eng C 30:566–574

    Article  CAS  Google Scholar 

  42. Filip Z, Hermann S, Demnerová K (2008) FT-IR spectroscopic characteristics of differently cultivated Escherichia coli. Czech J Food Sci 26(6):458–463

    Article  Google Scholar 

  43. Weng YX, Wang Y, Wang XL, Wang YZ (2010) Biodegradation behavior of PHBV films in a pilot-scale composting conditions. Polym Test 29(5):579–587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors like to thank the National Science Foundation (NSF) for supporting this work through Grants: CREST HRD-1137681, HBCU-UP RIA-HRD1409918, MRI DMR-1725513 and REU DMR-1659506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik Zainuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zainuddin, S., Kamrul Hasan, S.M., Loeven, D. et al. Mechanical, Fire Retardant, Water Absorption and Soil Biodegradation Properties of Poly(3-hydroxy-butyrate-co-3-valerate) Nanofilms. J Polym Environ 27, 2292–2304 (2019). https://doi.org/10.1007/s10924-019-01517-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01517-9

Keywords

  • Nanocomposites
  • HNTs
  • Fire retardancy
  • Water absorption
  • Soil biodegradation