Skip to main content
Log in

Biomass Derived Antimicrobial Hybrid Cellulose Hydrogel with Green ZnO Nanoparticles for Curcumin Delivery and its Kinetic Modelling

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Regenerated cellulose obtained from sugarcane bagasse was used for hydrogel preparation using epichlorohydrin (crosslinker) and green zinc oxide nanoparticles (ZNPs) which were phytosynthesised from musk melon seed extract. The synthesised ZNPs were characterised using FESEM and EDAX. The swelling capacity of the hydrogel was determined by swelling measurements. For drug delivery studies from hydrogel, curcumin was selected as the model drug for its appealing anticancer and antimicrobial activity. The presence of ZNPs and curcumin in the hybrid hydrogel was analysed using FTIR, XRD, TGA and SEM analysis. The drug loading efficiency was optimised by Taguchi method. The drug release studies were performed under varying pH and initial drug loading concentration. The kinetic studies showed the best fit with case II type of transport with polymer swelling as the drug release mechanism. Antimicrobial activity for curcumin loaded hybrid hydrogel and pure cellulose hydrogel was performed using Staphylococcus aureus (bacteria) and Trichophyton rubrum (fungi). Thus, the developed curcumin loaded biomass derived hybrid hydrogel could find potential application towards skin infective applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Calo E, Khutoryanskiy VV (2015) Eur Polym J 65:252

    Article  CAS  Google Scholar 

  2. Gonzalez JS, Luduena LN, Ponce A, Alvarez VA (2014) Mater Sci Eng C 34:54

    Article  CAS  Google Scholar 

  3. Zhou Y, Fu S, Zhang L, Zhan H (2013) Carbohydr Polym 97:429

    Article  CAS  PubMed  Google Scholar 

  4. Chang C, Zhang L (2011) Carbohydr Polym 84:40

    Article  CAS  Google Scholar 

  5. Pan Y, Wang J, Cai P, Xiao H (2018) Int J Biol Macromol 118:132

    Article  CAS  PubMed  Google Scholar 

  6. Maity J, Ray SK (2017) Int J Biol Macromol 97:238

    Article  CAS  PubMed  Google Scholar 

  7. Dhananasekaran S, Palanivel R (2017) J Polym Environ 25:435

    Article  CAS  Google Scholar 

  8. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV (2017) J Polym Environ 25:1021–1032

    Article  CAS  Google Scholar 

  9. Ruchir P, Yuvraj SN (2017) J Polym Environ 25:1087–1098

    Article  CAS  Google Scholar 

  10. Ramesan MT, Siji C, Kalaprasad G, Bahuleyan BK, Al-Maghrabi MA (2018) J Polym Environ 6:2983

    Article  CAS  Google Scholar 

  11. Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Drug Discov Today 22:12

    Article  CAS  Google Scholar 

  12. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) RSC Adv 5:4993

    Article  CAS  Google Scholar 

  13. Azizi S, Mohamad R, Shahri MM (2017) Molecules 22:301

    Article  CAS  PubMed Central  Google Scholar 

  14. Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Carbohydr Polym 95:421

    Article  CAS  PubMed  Google Scholar 

  15. Akbari ZZ, Farhadnejad H, Nia BF, Abedin S, Yadollahi M, Ghayeni MK (2016) Int J Biol Macromol 93:1317

    Article  CAS  Google Scholar 

  16. Elumalai K, Velmurugan S (2015) Appl Surf Sci 345:329

    Article  CAS  Google Scholar 

  17. Johar N, Ahmad I, Dufresne A (2012) Ind Crops Prod 37:93

    Article  CAS  Google Scholar 

  18. Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Carbohydr Polym 82:122

    Article  CAS  Google Scholar 

  19. Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) Mater Sci Eng C 32:452

    Article  CAS  Google Scholar 

  20. Jawad AK, Fahad P, Nazar MR, Muhammad N, Nayab K, Zeeshan J (2017) J Polym Environ 25:556

    Article  CAS  Google Scholar 

  21. Konwar A, Kalita S, Kotoky J, Chowdhury D (2016) ACS Appl Mater Interfaces 8:20625

    Article  CAS  PubMed  Google Scholar 

  22. Bielska D, Karewicz A, Kaminski K, Kiełkowicz I, Lachowicz T, Szczubiałka K, Nowakowska M (2013) Eur Polym J 49:2485

    Article  CAS  Google Scholar 

  23. Shabestarian H, Tabrizi HM, Soltani M, Namvar F, Azizi S, Mohamad R, Shabestarian H (2017) Mater Res 20:264

    Article  CAS  Google Scholar 

  24. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2014) Int J Biol Macromol 74:136

    Article  CAS  PubMed  Google Scholar 

  25. Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Bezar HM (2016) Int J Biol Macromol 82:273

    Article  CAS  PubMed  Google Scholar 

  26. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Int J Biol Macromol 74:136

    Article  CAS  PubMed  Google Scholar 

  27. Wang N, Tong T, Xie M, Gaillard JF (2016) Nanotechnology 27:324001

    Article  CAS  PubMed  Google Scholar 

  28. Rakhshaei R, Namazi H (2017) Mater Sci Eng C 73:456

    Article  CAS  Google Scholar 

  29. Saeed AM (2013) Int J Adv Biol Biomed Res 1:1614

    CAS  Google Scholar 

  30. Senthilkumar N, Nandhakumar E, Priya P, Soni D, Vimalan M, Potheher IV (2017) New J Chem 41:10347

    Article  CAS  Google Scholar 

  31. Gunathilake TMSU, Ching YC, Chuah CH (2017) Polymers 9:64

    Article  CAS  Google Scholar 

  32. Shankar S, Oun AA, Jong-Whan R (2018) Int J Biol Macromol 107:17

    Article  CAS  PubMed  Google Scholar 

  33. Ashfaq M, Khan S, Verma N (2014) Biochem Eng J 90:79

    Article  CAS  Google Scholar 

  34. Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, Liu H, Cui D, Chen Y, Wang S (2012) Int J Nanomed 7:3667

    Article  CAS  Google Scholar 

  35. Jebela FS, Almasi H (2016) Carbohydr Polym 149:8

    Article  CAS  Google Scholar 

  36. Sriram K, Maheswari PU, Begum KMMS, Arthanareeswaran G, Antoniraj GM, Kandasamy R (2018) Eur J Pharm Sci 116:48

    Article  CAS  Google Scholar 

  37. Krishnakumar IM, Ravi A, Kumar D, Kuttan R, Maliakel B (2012) J Funct Foods 4:348

    Article  CAS  Google Scholar 

  38. Kharat M, Du Z, Zhang G, McClements DJ (2017) J Agric Food Chem 65:1525

    Article  CAS  PubMed  Google Scholar 

  39. Song IS, Cha JS, Choi MK (2016) Molecules 21:1386

    Article  CAS  PubMed Central  Google Scholar 

  40. Varaprasad K, Vimala K, Sakey R, Reddy NN, Reddy GSM, Raju KM (2012) J Polym Environ 20:573

    Article  CAS  Google Scholar 

  41. Sriram K, Maheswari PU, Ezhilarasu A, Begum KMMS, Arthanareeswaran G (2017) Asia-Pac J Chem Eng 12:858

    Article  CAS  Google Scholar 

  42. Espitia PJP, Soares NFF, Coimbra JSR, Andrade NJ, Cruz RS, Medeiros EAA (2012) Food Bioprocess Technol 5:1447

    Article  CAS  Google Scholar 

  43. Liu Y, Cai Y, Jiang X, Wu J, Le X (2016) Food Hydrocoll 52:564

    Article  CAS  Google Scholar 

  44. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) Biomed Res Int 2014:1

    Article  CAS  Google Scholar 

  45. Sawant VJ, Bamane SR (2018) J Drug Deliv Sci Technol 43:397

    Article  CAS  Google Scholar 

  46. Wang H, Gong X, Guo X, Liu C, Fan Y, Zhang J, Niu B, Li W (2019) Int J Biol Macromol 121:1118

    Article  CAS  PubMed  Google Scholar 

  47. Upadhyaya L, Singh J, Agarwal V, Pandey AC, Verma SP, Das P, Tewari RP (2014) J Polym Res 21:550

    Article  CAS  Google Scholar 

  48. Sun X, Liu C, Omer AM, Lu W, Zhang S, Jiang X, Wu H, Yu D, Ouyang XK (2019) Int J Biol Macromol 128:468

    Article  CAS  PubMed  Google Scholar 

  49. Mahmoud GA, Ali A, Raafat AI, Badawy NA, Elshahawy MF (2018) Radiat Phys Chem 147:18

    Article  CAS  Google Scholar 

  50. Kodoth AK, Ghate VM, Lewis SA, Badalamoole V (2018) Int J Biol Macromol 115:418

    Article  CAS  PubMed  Google Scholar 

  51. Wu W, Liu T, He H, Wu X, Cao X, Jin J, Sun Q, Roy VAL, Li RKY (2018) Colloids Surf B Biointerfaces 167:538

    Article  CAS  PubMed  Google Scholar 

  52. Janpetch N, Saito N, Rujiravanit R (2016) Carbohydr Polym 148:335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to National Institute of Technology—Tiruchirappalli for providing requisite infrastructure facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Meera Sheriffa Begum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagha, B., George, D., Maheswari, P.U. et al. Biomass Derived Antimicrobial Hybrid Cellulose Hydrogel with Green ZnO Nanoparticles for Curcumin Delivery and its Kinetic Modelling. J Polym Environ 27, 2054–2067 (2019). https://doi.org/10.1007/s10924-019-01495-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01495-y

Keywords

Navigation