Skip to main content

Advertisement

Log in

Adsorption of Iron(III) and Copper(II) by Bacterial Cellulose from Rhodococcus sp. MI 2

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Modified cellulose from the pellicle produced by Rhodococcus sp. MI 2 was more efficient at removing Fe(III) and Cu(II) from aqueous solution than similarly modified cellulose from Komagataeibar xylinus TISTR 998. This study first describes the modification of the cellulose to produce mercerized bacterial cellulose (MBC), phosphorylated bacterial cellulose (PBC), acid–base cellulose and diethylenetriamine bacterial cellulose (EABC). Their efficacy as adsorbents to adsorb Fe(III) and Cu(II) was then determined. In aqueous solution at pH 4 at initial Fe(III) concentration of 20 mg/L, PBC reached adsorption equilibrium within 195 min. At pH 5 in an initial Cu(II) concentration of 75 mg/L, EABC reached adsorption equilibrium within 210 min. Molecular structures and chemical bonds were examined by Fourier transform infrared spectroscopy (FT-IR) and physical morphologies by scanning electron microscopy. The adsorption kinetics of MBC, PBC and EABC showed good agreement with the proposed pseudo-second order model and the adsorption isotherm was best described by the Freundlich model. Our study determined optimal conditions, molecular structures, physical morphologies and adsorption kinetics. The cellulose produced by the new strain Rhodococcus sp. MI 2 was highly efficient at adsorbing and removing metal ions from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  2. Bradl H (2002) Heavy metals in the environment: origin, interaction and remediation. Academic Press, London

    Google Scholar 

  3. He ZL, Yang XE, Stoffella PJ (2005) J Trace Elem Med Biol 19(2–3):125–140

    Article  CAS  Google Scholar 

  4. Shallari S, Schwartz C, Hasko A (1998) Sci Total Environ 19209:133–142

    Article  Google Scholar 

  5. Nriagu JO (1989) Nature 338:47–49

    Article  CAS  Google Scholar 

  6. WHO/FAO/IAEA (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  7. Stern BR (2010) Toxicol Environ Health A 73(2):114–127

    Article  CAS  Google Scholar 

  8. Harvey LJ, McArdle HJ (2008) Br J Nutr 99(S3):S10–S13

    Article  CAS  Google Scholar 

  9. ATSDR (Agency for Toxic Substances and Disease Registry) (2002) Toxicological profile for copper. Centers for Disease Control, Atlanta

    Google Scholar 

  10. Vuori K-M (1995) Annal Zoo Fennici 32:317–329

    Google Scholar 

  11. Tchounwou P, Newsome C, Williams J (2008) Met Ions Biol Med 10:285–290

    PubMed  PubMed Central  Google Scholar 

  12. USEPA (US Environmental Protection Agency) (2015) Regulated drinking water contaminants. USEPA, Washington, DC

    Google Scholar 

  13. ATSDR (Agency for Toxic Substances and Disease Registry) (2015) Toxicological profiles, toxic substances portal. Department of Health and Human Services, Atlanta

    Google Scholar 

  14. EPA US (American Public Health Assoc US) (1993) Standard methods for the examination of water and waste-water. Environmental Protection Agency, Washington, DC

    Google Scholar 

  15. Phippen B, Horvath C, Nordin R (2008) Ambient water quality guidelines for iron: overview. Ministry of Environment Province of British Columbia, Nanaimo

    Google Scholar 

  16. Becker M, Asch F (2005) J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  17. Zhu MX, Lee L, Wang HH, Wang Z (2007) J Hazard Mater 149(3):735–741

    Article  CAS  Google Scholar 

  18. Bayramoglu G, Altintas B, Arica MY (2009) Chem Eng J 152(2/3):339–346

    Article  CAS  Google Scholar 

  19. Shu HY, Chang M-C, Yu H-H (2007) J Colloid Interface Sci 314(1):89–97

    Article  CAS  Google Scholar 

  20. Yola M, Eren T, Atar N, Wang S (2013) Chem Eng J 242:333–340

    Article  Google Scholar 

  21. Chen S, Zou Y, Yan Z (2009) J Hazard Mater 161:1355–1359

    Article  CAS  Google Scholar 

  22. Li N, Bai RB (2005) Sep Purif Technol 42(3):237–247

    Article  CAS  Google Scholar 

  23. Oshima T, Kondo K, Ohto K (2008) Funct Polym 68:376–383

    Article  CAS  Google Scholar 

  24. Shen W, Chen S, Shi S (2009) Carbohydr Polym 75:110–114

    Article  CAS  Google Scholar 

  25. Tanskul S, Amornthatree K, Jaturonlak N (2013) Carbohydr Polym 92:421–428

    Article  CAS  Google Scholar 

  26. Tanskul S, Damthongsen T, Jaturonlak N (2018) Biosci J 34(3):666–673

    Article  Google Scholar 

  27. Chen S, Shen W, Yu F (2010) J Appl Polym Sci 117:8–15

    CAS  Google Scholar 

  28. Lagergren S (1898) K Sven Vetenskapsakad Handl 24(4):1–39

    Google Scholar 

  29. Basurco J, Torem ML (2010) Chem Eng J 161(1):1–8

    Google Scholar 

  30. Vijayakumar G, Tamilarasan R, Dharmendirakumar M (2012) J Mater Environ Sci 3(1):157–170

    CAS  Google Scholar 

  31. Takagai Y, Shibata A, Kiyokawa S, Takase T (2011) J Colloid Interface Sci 353(2):593–597

    Article  CAS  Google Scholar 

  32. Hokkanen S, Repo E, Sillanpää M (2013) Chem Eng J 223:40–47

    Article  CAS  Google Scholar 

  33. Nakamoto K (1977) Infrared and Raman spectra of inorganic and coordination compounds, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  34. Hameed BH (2008) J Hazard Mater 154(1–3):204–212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the government budget of Prince of Songkla University, Thailand. The authors would like to thank Mr. Thomas Duncan Coyne and Ms. Anna Chatthong for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somporn Tanskul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yingkong, P., Tanskul, S. Adsorption of Iron(III) and Copper(II) by Bacterial Cellulose from Rhodococcus sp. MI 2. J Polym Environ 27, 1948–1958 (2019). https://doi.org/10.1007/s10924-019-01480-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01480-5

Keywords

Navigation