Skip to main content
Log in

Application of Novel Adsorbent Prepared by Mucor hiemalis Biomass Impregnated with Calcium Alginate for Removal of Sr2+ from Aqueous Solutions

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this research, a novel biosorbent was prepared by Mucor hiemalis biomass combined with calcium alginate (Mucor hiemalis/Alg-Ca). The dead biomass was entrapped into alginate gel by curing method in the presence of Ca2+ ions. The synthesized biosorbent characterized by XRD, EDAX, BET, FTIR, and SEM techniques was used for removal of Sr2+ from aquatic streams under various experimental conditions and the optimized adsorption capacity of 140 mg g−1 was obtained. The selectivity of the adsorbent towards Sr2+ studied in the presence of Na+, Cs+, Ca2+ and Mg2+ was reasonably high. The adsorption process was kinetically fast and the equilibrium was established within 60 min, and followed the pseudo-second order kinetics model. The equilibrium data was well described by Langmuir isotherm model. The thermodynamics parameters (∆G°, ∆H° and ∆S°) of the process were determined. Positive ∆H° and negative ∆G° were indicative of the endothermic and spontaneous nature of the adsorption process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Park D, Yun YS, Park JM (2005) Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60(10):1356–1364

    Article  CAS  PubMed  Google Scholar 

  2. Chakraborty D, Maji S, Bandyopadhyay A, Basu S (2007) Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 98(15):2949–2952

    Article  CAS  PubMed  Google Scholar 

  3. Rout TK, Sengupta DK, Kaur G, Kumar S (2006) Enhanced removal of dissolved metal ions in radioactive effluents by flocculation. Int J Miner Process 80(2–4):215–222

    Article  CAS  Google Scholar 

  4. Raut DR, Mohapatra PK, Manchanda VK (2012) A highly efficient supported liquid membrane system for selective strontium separation leading to radioactive waste remediation. J Membr Sci 390:76–83

    Article  CAS  Google Scholar 

  5. Cho Y, Komarneni S (2009) Cation exchange equilibria of cesium and strontium with K-depleted biotite and muscovite. Appl Clay Sci 44(1–2):15–20

    Article  CAS  Google Scholar 

  6. Omar H, Arida H, Daifullah A (2009) Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Appl Clay Sci 44(1–2):21–26

    Article  CAS  Google Scholar 

  7. Shroff KA, Vaidya VK (2011) Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chem Eng J 171(3):1234–1245

    Article  CAS  Google Scholar 

  8. Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water 35(17):4079–4085

    CAS  Google Scholar 

  9. Utomo HD, Tan KXD, Choong ZYD, Yu JJ, Ong JJ, Lim ZB (2016) Biosorption of heavy metal by algae biomass in surface water. J Environ Prot 7(11):1547

    Article  CAS  Google Scholar 

  10. Brady D, Stoll A, Duncan JR (1994) Biosorptton of heavy metal cations by non-viable yeast biomass. Environ Technol 15(5):429–438

    Article  CAS  Google Scholar 

  11. Sağ Y, Kutsal T (2000) Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Process Biochem 35(8):801–807

    Article  Google Scholar 

  12. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus Niger. Bioresour Technol 70(1):95–104

    Article  CAS  Google Scholar 

  13. Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37(18):4486–4496

    Article  CAS  PubMed  Google Scholar 

  14. Dwivedi S, Mishra A, Saini D (2012) Removal of heavy metals in liquid media through fungi isolated from waste water. Int J Sci Res 1(3):181–185

    Google Scholar 

  15. Nourbakhsh MN, Kiliçarslan S, Ilhan S, Ozdag H (2001) Biosorption of Cr6+, Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp. Chem Eng 85(2–3):351–355

    Google Scholar 

  16. Ngwenya N, Chirwa EMN (2010) Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria. Miner Eng 23(6):463–470

    Article  CAS  Google Scholar 

  17. Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59(1):75–84

    Article  CAS  PubMed  Google Scholar 

  18. Bai RS, Abraham TE (2002) Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36(5):1224–1236

    Article  CAS  PubMed  Google Scholar 

  19. Suriya J, Bharathiraja S, Rajasekaran R (2013) Biosorption of Heavy metals by biomass of Enterobacter Cloacae isolated from metal-polluted soils. Int J Chem Technol Res 5(3):1329–1338

    CAS  Google Scholar 

  20. Mohan SV, Rao NC, Prasad KK, Karthikeyan J (2002) Treatment of simulated reactive yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manag 22(6):575–582

    Article  PubMed  Google Scholar 

  21. Volesky B (1990) Removal and recovery of heavy metals by biosorption. In: Biosorption of heavy metals. pp. 7–43

  22. Tahir A, Lateef Z, Abdel-Megeed A, Sholkamy EN, Mostafa AA (2017) In vitro compatibility of fungi for the biosorption of zinc(II) and copper(II) from electroplating effluent. Curr Sci 112(4):839–844

    Article  CAS  Google Scholar 

  23. Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):71–79

    CAS  Google Scholar 

  24. Tewari N, Vasudevan P, Guha BK (2005) Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J 23(2):185–192

    Article  CAS  Google Scholar 

  25. Khambhaty Y, Mody K, Basha S, Jha B (2009) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145(3):489–495

    Article  CAS  Google Scholar 

  26. Kumar KK, Prasad MK, Sarada B, Sarma GV, Murthy CV (2010) Optimization of Ni(II) removal on Rhizomucor tauricus by using Box-Behnken design. Asian J Chem 22(7):5773–5775

    Google Scholar 

  27. Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ Pollut 104(3):421–427

    Article  CAS  Google Scholar 

  28. Bahobil A, Bayoumi RA, Atta HM, El-Sehrawey MM (2017) Fungal biosorption for cadmium and mercury heavy metal ions isolated from some polluted localities in KSA. Int J Curr Microbiol Appl Sci 6(6):2138–2154

    Article  CAS  Google Scholar 

  29. Khani MH, Pahlavanzadeh H, Alizadeh K (2012) Biosorption of strontium from aqueous solution by fungus Aspergillus terreus. Environ Sci Pollut Res 19(6):2408–2418

    Article  CAS  Google Scholar 

  30. Lloyd JR, Harding CL, Macaskie LE (1997) Tc(VII) reduction and accumulation by immobilized cells of Escherichia coli. Biotechnol Bioeng 55(3):505–510

    Article  CAS  PubMed  Google Scholar 

  31. Kumar KK, Prasad MK, Sarma GV, Murthy CV (2009) Removal of Cd(II) from aqueous solution using immobilized Rhizomucor tauricus. J Microbial Biochem Technol 1(1):015–021

    Article  CAS  Google Scholar 

  32. Li C, Lu J, Li S, Tong Y, Ye B (2017) Synthesis of magnetic microspheres with sodium alginate and activated carbon for removal of methylene blue. Materials 10(1):84

    Article  CAS  PubMed Central  Google Scholar 

  33. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohyd Polym 137:360–374

    Article  CAS  Google Scholar 

  34. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44(3):301–316

    Article  CAS  Google Scholar 

  35. Sana S, Roostaazad R, Yaghmaei S (2015) Biosorption of uranium(VI) from aqueous solution by pretreated Aspergillus niger using sodium hydroxide. Iran J Chem Chem Eng 34(1):65–74

    CAS  Google Scholar 

  36. Pasparakis G, Bouropoulos N (2006) Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm 323(1–2):34–42

    Article  CAS  PubMed  Google Scholar 

  37. Qi Y, Jiang M, Cui YL, Zhao L, Zhou X (2015) Synthesis of Quercetin loaded nanoparticles based on alginate for Pb(II) adsorption in aqueous solution. Nanosc Res Lett 10(1):408

    Article  CAS  Google Scholar 

  38. Zhao X, Xia Y, Li Q, Ma X, Quan F, Geng C, Han Z (2014) Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf A 444:180–188

    Article  CAS  Google Scholar 

  39. Hiremath PG, Theodore T (2017) Biosorption of fluoride from synthetic and ground water using Chlorella vulgaris immobilized in calcium alginate beads in an upflow packed bed column. Period Polytech Chem Eng 61(3):188–199

    Article  CAS  Google Scholar 

  40. Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran 19(6):2023–2028

    Article  CAS  Google Scholar 

  41. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mandal S, Kumar SS, Krishnamoorthy B, Basu SK (2010) Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. Braz J Pharm Sci 46(4):785–793

    Article  CAS  Google Scholar 

  43. Shroff KA, Vaidya VK (2011) Effect of pre-treatments on biosorption of Ni(II) by dead biomass of Mucor hiemalis. Eng Life Sci 11(6):588–597

    Article  CAS  Google Scholar 

  44. Gryganskyi AP, Lee SC, Litvintseva AP, Smith ME, Bonito G, Porter TM, Anishchenko IM, Heitman J, Vilgalys R (2010) Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex. PLoS ONE 5(12):e15273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte AR, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8

    Article  CAS  Google Scholar 

  46. Naeimi S, Faghihian H (2017) Application of novel metal organic framework, MIL-53 (Fe) and its magnetic hybrid: for removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environ Toxicol Pharmacol 53:121–132

    Article  CAS  PubMed  Google Scholar 

  47. Naeimi S, Faghihian H (2017) Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep Purif Technol 175:255–265

    Article  CAS  Google Scholar 

  48. Abdelkreem M, Husein DZ (2012) Removal of strontium from aqueous solutions by adsorption on to orange peel: isotherms, kinetics, and thermodynamic studies. Egypt J Environ Res 1:42–61

    Google Scholar 

  49. Sadeghi M, Yekta S, Ghaedi H, Babanezhad E (2016) Effective removal of radioactive 90Sr by CuO NPs/Ag-clinoptilolite zeolite composite adsorbent from water sample: isotherm, kinetic and thermodynamic reactions study. Int J Ind Chem 7(3):315–331

    Article  CAS  Google Scholar 

  50. Esfandian H, Fakhraee H, Azizi A (2016) Removal of strontium ions by synthetic nano sodalite zeolite from aqueous solution. Int J Eng Trans B 29(2):160–169

    CAS  Google Scholar 

  51. Tu YJ, You CF, Zhang Z, Duan Y, Fu J, Xu D (2016) Strontium removal in seawater by means of composite magnetic nanoparticles derived from industrial sludge. Water 8(8):357

    Article  CAS  Google Scholar 

  52. Esmaeeli N, Faghihian H, Naeimi S (2018) Magnetization and modification of ETS-4 titanosilicate for removal of fluoride from aqueous solutions. J Alloys Compd 744:271–280

    Article  CAS  Google Scholar 

  53. Naeimi S, Faghihian H (2017) Modification and magnetization of MOF (HKUST-1) for the removal of Sr2+ from aqueous solutions. Equilibrium, kinetic and thermodynamic modeling studies. Sep Sci Technol 52(18):2899–2908

    Article  CAS  Google Scholar 

  54. Naeimi S, Faghihian H (2018) Remediation of pharmaceutical contaminated water by use of magnetic functionalized metal organic framework. Physicochemical study of doxycycline adsorption. Water Environ J. https://doi.org/10.1111/wej.12343

    Article  Google Scholar 

  55. Belhachemi M, Addoun F (2011) Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1(3–4):111–117

    Article  CAS  Google Scholar 

  56. Simsek EB, Beker U (2014) Equilibrium arsenic adsorption onto metallic oxides: isotherm models, error analysis and removal mechanism. Korean J Chem Eng 31(11):2057–2069

    Article  CAS  Google Scholar 

  57. Hashem A, Adam E, Hussein HA, Sanousy MA, Ayoub A (2013) Bioadsorption of Cd(II) from contaminated water on treated sawdust: adsorption mechanism and optimization. J Water Resour Prot 5(1):82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Faghihian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeimi, S., Faghihian, H. Application of Novel Adsorbent Prepared by Mucor hiemalis Biomass Impregnated with Calcium Alginate for Removal of Sr2+ from Aqueous Solutions. J Polym Environ 27, 1572–1583 (2019). https://doi.org/10.1007/s10924-019-01453-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01453-8

Keywords

Navigation