Skip to main content
Log in

Reinforcement of Soy Protein-Based Bioplastics Through Addition of Lignocellulose and Injection Molding Processing Conditions

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bioplastics have gained great interest in recent years as a potential alternative to conventional plastics, since they are renewable and biodegradable materials. However, their mechanical properties are not able to match those of conventional plastics yet. In this context, the incorporation of additives to improve those properties of bioplastics is an interesting line of research. The aim of this work was to develop soy protein-based bioplastics with lignocellulosic fiber (additive) by injection molding. Mechanical and absorption properties of bioplastics reinforced with lignocellulose (0.1, 1.0, 5.0 wt%) have been studied, as well as their microstructure. Furthermore, a study of the effect produced by changing the mold temperature (70, 90, 110, 130 °C) was carried out. The results obtained confirm an improvement of the mechanical properties of these bioplastics, depending on the amount of fiber incorporated. In any case, these findings support the role of cellulosic compounds as additives in protein bioplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Plastics Europe (2016) An analysis of european plastics production, demand and waste data. http://www.plasticseurope.es/Document/plastics—the-facts-2016-15787.aspx?FollD=2. Accessed 11 Jun 2018

  2. Hoornweg D, Bhada-Tata P, Kennedy C (2013) Environment: waste production must peak this century. Nature 502:615–617. https://doi.org/10.1038/502615a

    Article  PubMed  Google Scholar 

  3. Wilson DC, Rodic L, Modak P, et al (2015) Global waste management outlook: Summary for decision-makers. International Environmental Technology Centre (IETC) Division of Industry, Technology and Economics, UNEP, Japan

  4. Remar (Red de Energía y Medio Ambiente) (2011) Introducción a los bioplásticos. Bioplásticos: Guía práctica—número 2. Remar, Madrid, pp 4–6

    Google Scholar 

  5. Tanrattanakul V, Saithai P (2009) Mechanical properties of bioplastics and bioplastic–organoclay nanocomposites prepared from epoxidized soybean oil with different epoxide contents. J Appl Polym Sci 114:3057–3067. https://doi.org/10.1002/app.30842

    Article  CAS  Google Scholar 

  6. Sakunkittiyut Y, Kunanopparat T, Menut P, Siriwattanayotin S (2013) Effect of kraft lignin on protein aggregation, functional, and rheological properties of fish protein-based material. J Appl Polym Sci 127:1703–1710. https://doi.org/10.1002/app.37899

    Article  CAS  Google Scholar 

  7. Jones A, Mandal A, Sharma S (2015) Protein-based bioplastics and their antibacterial potential. J Appl Polym Sci 132:41931. https://doi.org/10.1002/app.41931

    Article  CAS  Google Scholar 

  8. Gonçalves I, Vasconcelos A, Machado ASL, Alves AV (2017) Bioplastics from agro-wastes for food packaging applications. In: Grumezescu AM (ed) Food packaging, 1st edn. Academic Press, Cambridge, pp 223–263

    Chapter  Google Scholar 

  9. Verbeek CJR, Uitto JM (2017) Bioplastics. Encycl Polym Sci Technol. https://doi.org/10.1002/0471440264.pst654

    Article  Google Scholar 

  10. Felix M, Perez-Puyana V, Romero A, Guerrero A (2017) Production and characterization of bioplastics obtained by injection moulding of various protein systems. J Polym Environ 25:91–100. https://doi.org/10.1007/s10924-016-0790-7

    Article  CAS  Google Scholar 

  11. Guerrero P, Retegi A, Gabilondo N, De La Caba K (2010) Mechanical and thermal properties of soy protein films processed by casting and compression. J Food Eng 100:145–151. https://doi.org/10.1016/j.jfoodeng.2010.03.039

    Article  CAS  Google Scholar 

  12. Tian H, Wang Y, Zhang L et al (2010) Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crops Prod 32:13–20. https://doi.org/10.1016/j.indcrop.2010.02.009

    Article  CAS  Google Scholar 

  13. Song F, Tang D-L, Wang X-L, Wang Y-Z (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromolecules 12:3369–3380. https://doi.org/10.1021/bm200904x

    Article  CAS  PubMed  Google Scholar 

  14. Liu B, Jiang L, Zhang J (2010) Development of soy protein/poly (lacctic acid) bioplastics. In: Society of Plastic Engineers (ed) Global Plastics Environmental Conference

  15. Félix M, Martín-Alfonso JE, Romero A, Guerrero A (2014) Development of albumen/soy biobased plastic materials processed by injection molding. J Food Eng 125:7–16. https://doi.org/10.1016/j.jfoodeng.2013.10.018

    Article  CAS  Google Scholar 

  16. Zárate-Ramírez LS, Romero A, Bengoechea C et al (2014) Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics. Carbohydr Polym 112:24–31. https://doi.org/10.1016/j.carbpol.2014.05.055

    Article  CAS  PubMed  Google Scholar 

  17. Felix M, Romero A, Cordobes F, Guerrero A (2014) Development of crayfish bio-based plastic materials processed by small-scale injection moulding. J Sci Food Agric 95:679–687. https://doi.org/10.1002/jsfa.6747

    Article  CAS  PubMed  Google Scholar 

  18. Adamy M, Verbeek CJR (2013) Injection-molding performance and mechanical properties of blood meal-based thermoplastics. Adv Polym Technol 32:1–9. https://doi.org/10.1002/adv.21361

    Article  CAS  Google Scholar 

  19. Jansens KJA, Vo Hong N, Telen L et al (2013) Effect of molding conditions and moisture content on the mechanical properties of compression molded glassy, wheat gluten bioplastics. Ind Crops Prod 44:480–487. https://doi.org/10.1016/j.indcrop.2012.10.006

    Article  CAS  Google Scholar 

  20. Beltrán M, Marcilla A (2015) Tecnología de polímeros. Procesado y propiedades. Universidad de Alicante, Alicante

    Google Scholar 

  21. Perez V, Felix M, Romero A, Guerrero A (2016) Characterization of pea protein-based bioplastics processed by injection moulding. Food Bioprod Process 97:100–108. https://doi.org/10.1016/j.fbp.2015.12.004

    Article  CAS  Google Scholar 

  22. Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016) Thermomechanical properties and water uptake capacity of soy protein-based bioplastics processed by injection molding. J Appl Polym Sci 133:43524. https://doi.org/10.1002/app.43524

    Article  CAS  Google Scholar 

  23. Rendón-Villalobos JR, Solorza-Feria J, Rodríguez-González F, Flores-Huicochea E (2017) Barrier properties improvement using additives. In: Grumezescu AM (ed) Food packaging. Academic Press, Cambridge, pp 465–495

    Chapter  Google Scholar 

  24. Felix M, Perez-Puyana V, Romero A, Guerrero A (2017) Development of protein-based bioplastics modified with different additives. J Appl Polym Sci 143:45430

    Article  CAS  Google Scholar 

  25. Bourny V, Perez-Puyana V, Felix M et al (2017) Evaluation of the injection moulding conditions in soy/nanoclay based composites. Eur Polym J 95:539–546. https://doi.org/10.1016/j.eurpolymj.2017.08.036

    Article  CAS  Google Scholar 

  26. Sun E, Liao G, Zhang Q et al (2019) Biodegradable copolymer-based composites made from straw fiber for biocomposite flowerpots application. Compos B 165:193–198. https://doi.org/10.1016/j.compositesb.2018.11.121

    Article  CAS  Google Scholar 

  27. Sun E, Liao G, Zhang Q et al (2018) Green preparation of straw fiber reinforced hydrolyzed soy protein isolate/urea/formaldehyde composites for biocomposite flower pots application. Materials (Basel) 11:1695. https://doi.org/10.3390/ma11091695

    Article  Google Scholar 

  28. Chensong D, Hitoshi T (2014) Flexural properties of cellulose nanofibre reinforced green composites. Compos Part B 58:418–421

    Article  CAS  Google Scholar 

  29. Lubis M, Harahap MB, Ginting MHS et al (2018) Production of bioplastic from avocado seed starch reinforced with microcrystalline cellulose from sugar palm fibers. J Eng Sci Technol 13:381–393

    Google Scholar 

  30. Felix M, Carpintero V, Romero A, Guerrero A (2016) Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding. Polímeros 26:277–281. https://doi.org/10.1590/0104-1428.0044

    Article  Google Scholar 

  31. Tagi A, Askar KA, Nagy K et al (2011) Effect of different concentrations of olive oil and oleic acid on the mechanical properties of albumen (egg white) edible films. Afr J Biotechnol 10:12963–12972

    Article  Google Scholar 

  32. Hosseini S, Ghiasi F, Jahromi M (2017) Nanocapsule formation by complexation of biopolymers. Nanoencapsul Technol Food Nutraceut Ind 2017:447–492

    Article  Google Scholar 

  33. Orts WJ, Shey J, Imam SH et al (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306. https://doi.org/10.1007/s10924-005-5514-3

    Article  CAS  Google Scholar 

  34. Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638. https://doi.org/10.1023/B:JMSC.0000016162.43897.0a

    Article  CAS  Google Scholar 

  35. Montaño-Leyva B, da Silva GGD, Gastaldi E et al (2013) Biocomposites from wheat proteins and fibers: structure/mechanical properties relationships. Ind Crops Prod 43:545–555. https://doi.org/10.1016/j.indcrop.2012.07.065

    Article  CAS  Google Scholar 

  36. Page DH, El-Hosseiny F (1983) Mechanical properties of single wood pulp fibres. Part VI. Fibril angle and the shape of the stress-strain curve. J Pulp Pap Sci 9:99–100

    Google Scholar 

  37. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  CAS  Google Scholar 

  38. Bennick A (2002) Interaction of plant polyphenols with salivary proteins. Crit Rev Oral Biol Med 13:184–196

    Article  PubMed  Google Scholar 

  39. Sarni-Manchado P, Cheynier V, Moutounet M (1999) Interactions of grape seed tannins with salivary proteins. J Agric Food Chem 47:42–47. https://doi.org/10.1021/jf9805146

    Article  CAS  PubMed  Google Scholar 

  40. Félix M, Lucio-Villegas A, Romero A, Guerrero A (2016) Development of rice protein bio-based plastic materials processed by injection molding. Ind Crop Prod 79:152–159. https://doi.org/10.1016/j.indcrop.2015.11.028

    Article  CAS  Google Scholar 

  41. Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016) Protein/glycerol blends and injection-molded bioplastic matrices: soybean versus egg albumen. J Appl Polym Sci 133:42980. https://doi.org/10.1002/app.42980

    Article  CAS  Google Scholar 

  42. Dealy JM (1983) A practical guide to testing and property measurement. Vn Nostrand Reinhold Co., New York

    Google Scholar 

  43. Van Wazer JR, Lyons JW, Kim KY, Colwell RE (1963) A laboratory handbook of rheology. Interscience Publishers, New York

    Google Scholar 

  44. ISO 570-2:1993 (1993) Plastics. Determination of tensile properties. Part 2: Test conditions for moulding and extrusion plastics

  45. ASTM D570-98 (2005) Standard test method for water absorption of plastics

  46. Mohanty AK, Tummala P, Liu W et al (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285. https://doi.org/10.1007/s10924-005-4762-6

    Article  CAS  Google Scholar 

  47. Kunanopparat T, Menut P, Morel M-H, Guilbert S (2008) Plasticized wheat gluten reinforcement with natural fibers: effect of thermal treatment on the fiber/matrix adhesion. Compos A 39:1787–1792. https://doi.org/10.1016/j.compositesa.2008.08.006

    Article  CAS  Google Scholar 

  48. Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem 75:1–9

    Article  CAS  Google Scholar 

  49. Li Q, Liao G, Zhang S et al (2018) Effect of adjustable molecular chain structure and pure silica zeolite nanoparticles on thermal, mechanical, dielectric, UV-shielding and hydrophobic properties of fluorinated copolyimide composites. Appl Surf Sci 427:437–450. https://doi.org/10.1016/j.apsusc.2017.08.024

    Article  CAS  Google Scholar 

  50. Li Q, Liao G, Tian J, Xu Z (2018) Preparation of novel fluorinated copolyimide/amine-functionalized sepia eumelanin nanocomposites with enhanced mechanical, thermal, and UV-shielding properties. Macromol Mater Eng 303:1700407. https://doi.org/10.1002/mame.201700407

    Article  CAS  Google Scholar 

  51. Liao G, Chen J, Zeng W et al (2016) Facile preparation of uniform nanocomposite spheres with loading silver nanoparticles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol. J Phys Chem C 120:25935–25944. https://doi.org/10.1021/acs.jpcc.6b09356

    Article  CAS  Google Scholar 

  52. Liao G, Li Q, Zhao W et al (2018) In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl Catal A Gen 549:102–111. https://doi.org/10.1016/j.apcata.2017.09.034

    Article  CAS  Google Scholar 

  53. Mamun A, Nikousaleh MA, Feldmann M et al (2016) 8—Lignin reinforcement in bioplastic composites. In: Faruk O (ed) Lignin reinforcement in bioplastic composites. William Andrew Publishing, Amsterdam, pp 153–165

    Chapter  Google Scholar 

  54. Nam S, Netravali AN (2004) Characterization of ramie fiber/soy protein concentrate (SPC) resin interface. J Adhes Sci Technol 18:1063–1076. https://doi.org/10.1163/1568561041257504

    Article  CAS  Google Scholar 

  55. Kim J-K, Mai Y (1991) High strength, high fracture toughness fibre composites with interface control—a review. Compos Sci Technol 41:333–378. https://doi.org/10.1016/0266-3538(91)90072-W

    Article  CAS  Google Scholar 

  56. Huang X, Netravali A (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1015. https://doi.org/10.1016/j.compscitech.2009.01.014

    Article  CAS  Google Scholar 

  57. Jerez A, Partal P, Martínez I et al (2005) Rheology and processing of gluten based bioplastics. Biochem Eng J 26:131–138. https://doi.org/10.1016/j.bej.2005.04.010

    Article  CAS  Google Scholar 

  58. Bruyninckx K, Jansens KJA, Goderis B et al (2015) Removal of disulfide cross-links from wheat gluten and the effect thereof on the mechanical properties of rigid gluten bioplastic. Eur Polym J 68:573–584. https://doi.org/10.1016/j.eurpolymj.2015.03.047

    Article  CAS  Google Scholar 

  59. Bruyninckx K, Jansens KJA, Delcour JA, Smet M (2016) The effect of cross-linking additives on the structure and properties of glassy wheat gluten material. Ind Crops Prod 81:38–48. https://doi.org/10.1016/j.indcrop.2015.11.049

    Article  CAS  Google Scholar 

  60. Li Y, Xin S, Bian Y et al (2016) The physical properties of poly(l-lactide) and functionalized eggshell powder composites. Int J Biol Macromol 85:63–73. https://doi.org/10.1016/j.ijbiomac.2015.12.070

    Article  CAS  PubMed  Google Scholar 

  61. Paetau I, Chen CZ, Jane JL (1994) Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical-properties and water-absorption. Ind Eng Chem Res 33:1821–1827. https://doi.org/10.1021/ie00031a023

    Article  CAS  Google Scholar 

  62. Mo X, Sun XS, Wang Y (1999) Effects of molding temperature and pressure on properties of soy protein polymers. J Appl Polym Sci 73:2595–2602. https://doi.org/10.1002/(SICI)1097-4628(19990923)73:13%3c2595:AID-APP6%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of a Research Project sponsored by the Spanish Government “Ministerio de Economía y Competitividad” by the Grant Ref. CTQ2015-71164-P. The authors gratefully acknowledge their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jiménez-Rosado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations'.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamero, S., Jiménez-Rosado, M., Romero, A. et al. Reinforcement of Soy Protein-Based Bioplastics Through Addition of Lignocellulose and Injection Molding Processing Conditions. J Polym Environ 27, 1285–1293 (2019). https://doi.org/10.1007/s10924-019-01430-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01430-1

Keywords

Navigation