Skip to main content
Log in

Effect of Natural Glyceryl Tributyrate as Plasticizer and Compatibilizer on the Performance of Bio-Based Polylactic Acid/poly(3-hydroxybutyrate) Blends

Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bio-based poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) films were melt-blended with a natural hydrophobic plasticizer (glyceryl tributyrate, TB) at three different concentrations (10, 15 and 20% by weight per 100 parts of the blends) to study the effect of TB on the final properties of the materials. The pursued aim was to obtain a material with potential use in the packaging industry. Two different PLA/PHB ratios were used, 70/30 and 60/40, respectively. A full characterization of the developed blends was carried out, including the morphological, thermal, mechanical and barrier properties. The thermal test revealed the immiscibility between PLA and PHB by showing two glass transition temperatures for the blends and biphasic melt. Mechanical tests showed the increased in the elongation at break as the plasticizer content in films increased. The incorporation of PHB crystals in the PLA matrix displayed an improvement in the water barrier properties of materials. Finally, formulations PLA/PHB-TB with 15 wt% of plasticizer presented the best combination of properties suitable for the intended use in films manufacturing, showing toughness and ductility, good water barrier properties and transparency with slightly amber color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: Dreams and reality. Macromol Chem Phys 214:159–174. https://doi.org/10.1002/macp.201200439

    Article  CAS  Google Scholar 

  2. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. https://doi.org/10.1023/A:1021013921916

    Article  CAS  Google Scholar 

  3. Lim JS, Park K, Il Chung GS, Kim JH (2013) Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites. Mater Sci Eng C 33:2131–2137. https://doi.org/10.1016/j.msec.2013.01.030

    Article  CAS  Google Scholar 

  4. Li L, Huang W, Wang B et al (2015) Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polym (United Kingdom) 68:183–194. https://doi.org/10.1016/j.polymer.2015.05.024

    Article  CAS  Google Scholar 

  5. Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571. https://doi.org/10.1016/j.polymertesting.2005.02.008

    Article  CAS  Google Scholar 

  6. Crétois R, Chenal JM, Sheibat-Othman N et al (2016) Physical explanations about the improvement of PolyHydroxyButyrate ductility: hidden effect of plasticizer on physical ageing. Polym (United Kingdom) 102:176–182. https://doi.org/10.1016/j.polymer.2016.09.017

    Article  CAS  Google Scholar 

  7. Puglia D, Fortunati E, D’Amico DA et al (2016) Influence of processing conditions on morphological, thermal and degradative behavior of nanocomposites based on plasticized poly(3-hydroxybutyrate) and organo-modified clay. J Polym Environ 24:12–22. https://doi.org/10.1007/s10924-015-0744-5

    Article  CAS  Google Scholar 

  8. Raza ZA, Riaz S, Banat IM (2017) Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Progr 34(1):29–41. https://doi.org/10.1002/btpr.2565

    Article  CAS  Google Scholar 

  9. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79. https://doi.org/10.1002/adv.20235

    Article  CAS  Google Scholar 

  10. Pillin I, Montrelay N, Grohens Y (2006) Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer 47:4676–4682. https://doi.org/10.1016/j.polymer.2006.04.013

    Article  CAS  Google Scholar 

  11. Armentano I, Fortunati E, Burgos N et al (2015) Bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT—Food Sci Technol 64:980–988. https://doi.org/10.1016/j.lwt.2015.06.032

    Article  CAS  Google Scholar 

  12. Saeidlou S, Huneault M, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005

    Article  CAS  Google Scholar 

  13. Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200–1205. https://doi.org/10.1002/app.38308

    Article  CAS  Google Scholar 

  14. Martino VP, Jiménez A, Ruseckaite R, Avérous L (2011) Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polym Adv Technol 22:2206–2213. https://doi.org/10.1002/pat.1747

    Article  CAS  Google Scholar 

  15. Jost V (2015) Blending of polyhydroxybutyrate-co-valerate with polylactic acid for packaging applications—reflections on miscibility and effects on the mechanical and barrier properties. Chem Biochem Eng Q 29:221–246. https://doi.org/10.15255/CABEQ.2014.2257

    Article  CAS  Google Scholar 

  16. Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. Eur Polym J 50:255–270. https://doi.org/10.1016/j.eurpolymj.2013.11.009

    Article  CAS  Google Scholar 

  17. Wang S, Ma P, Wang R et al (2008) Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polym Degrad Stab 93:1364–1369. https://doi.org/10.1016/j.polymdegradstab.2008.03.026

    Article  CAS  Google Scholar 

  18. D’Amico DA, Iglesias Montes ML, Manfredi LB, Cyras VP (2016) Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: use of a common plasticizer as performance improvement strategy. Polym Test 49:22–28. https://doi.org/10.1016/j.polymertesting.2015.11.004

    Article  CAS  Google Scholar 

  19. Vieira MGA, Da Silva MA, Dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  20. Abdelwahab M, Flynn A, Chiou B, Sen et al (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab 97:1822–1828. https://doi.org/10.1016/j.polymdegradstab.2012.05.036

    Article  CAS  Google Scholar 

  21. Kong Y, Hay JN (2003) The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur Polym J 39:1721–1727. https://doi.org/10.1016/S0014-3057(03)00054-5

    Article  CAS  Google Scholar 

  22. Wang Y, Qin Y, Zhang Y et al (2014) Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films. Int J Biol Macromol 67:58–63. https://doi.org/10.1016/j.ijbiomac.2014.02.048

    Article  CAS  PubMed  Google Scholar 

  23. Ohkoshi I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer 41:5985–5992. https://doi.org/10.1016/S0032-3861(99)00781-8

    Article  CAS  Google Scholar 

  24. Blumm E, Owen AJ (1995) Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/ poly (L-lactide) blends. 36:4077–4081

  25. Furukawa T, Sato H, Murakami R et al (2007) Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(l-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry. Polymer 48:1749–1755. https://doi.org/10.1016/j.polymer.2007.01.020

    Article  CAS  Google Scholar 

  26. Chang L, Woo EM (2011) Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid). Polymer 52:68–76. https://doi.org/10.1016/j.polymer.2010.11.028

    Article  CAS  Google Scholar 

  27. Nanda MR, Misra M, Mohanty AK (2011) The effects of process engineering on the performance of PLA and PHBV blends. Macromol Mater Eng 296:719–728. https://doi.org/10.1002/mame.201000417

    Article  CAS  Google Scholar 

  28. Bartczak Z, Galeski A, Kowalczuk M et al (2013) Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate)—morphology and properties. Eur Polym J 49:3630–3641. https://doi.org/10.1016/j.eurpolymj.2013.07.033

    Article  CAS  Google Scholar 

  29. Ferreira BMP, Zavaglia CAC, Duek EAR (2002) Films of PLLA/PHBV: Thermal, morphological, and mechanical characterization. J Appl Polym Sci 86:2898–2906. https://doi.org/10.1002/app.11334

    Article  CAS  Google Scholar 

  30. D’Amico DA, Manfredi LB, Cyras VP (2012) Relationship between thermal properties, morphology, and crystallinity of nanocomposites based on polyhydroxybutyrate. J Appl Polym Sci 123:200–208. https://doi.org/10.1002/app.34457

    Article  CAS  Google Scholar 

  31. D’Amico DA, Cyras VP, Manfredi LB (2014) Non-isothermal crystallization kinetics from the melt of nanocomposites based on poly(3-hydroxybutyrate) and modified clays. Thermochim Acta 594:80–88. https://doi.org/10.1016/j.tca.2014.08.023

    Article  CAS  Google Scholar 

  32. Bonilla J, Fortunati E, Atarés L et al (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocoll 35:463–470. https://doi.org/10.1016/j.foodhyd.2013.07.002

    Article  CAS  Google Scholar 

  33. Dilara P, Briassoulis D (1998) Standard testing methods for mechanical properties and degradation of low density polyethylene (LDPE) films used as greenhouse covering materials: a critical evaluation. Polym Test 17:549–585. https://doi.org/10.1016/S0142-9418(97)00074-3 doi

    Article  CAS  Google Scholar 

  34. Adhikary KB, Pang S, Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B Eng 39:807–815. https://doi.org/10.1016/j.compositesb.2007.10.005

    Article  CAS  Google Scholar 

  35. Zembouai I, Kaci M, Bruzaud S et al (2013) A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing. Polym Test 32:842–851. https://doi.org/10.1016/j.polymertesting.2013.04.004

    Article  CAS  Google Scholar 

  36. Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768. https://doi.org/10.1016/j.polymertesting.2013.03.016

    Article  CAS  Google Scholar 

  37. Mali S, Grossmann MVE, García M et al (2004) Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr Polym 56:129–135. https://doi.org/10.1016/j.carbpol.2004.01.004

    Article  CAS  Google Scholar 

  38. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517–1526. https://doi.org/10.1016/S0032-3861(02)00907-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was made possible by the support from the National Research Council of Argentina (PIP 0527) and the National University of Mar del Plata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Cyras.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias Montes, M.L., D’amico, D.A., Manfredi, L.B. et al. Effect of Natural Glyceryl Tributyrate as Plasticizer and Compatibilizer on the Performance of Bio-Based Polylactic Acid/poly(3-hydroxybutyrate) Blends. J Polym Environ 27, 1429–1438 (2019). https://doi.org/10.1007/s10924-019-01425-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01425-y

Keywords

Navigation