Skip to main content

Microbial Cellulose from a Komagataeibacter intermedius Strain Isolated from Commercial Wine Vinegar


In this study a new bacterial cellulose (BC) producer isolated from commercial vinegar is identified as Komagataeibacter intermedius JF2 based on the examination of general taxonomical characteristics, 16S rDNA sequence analysis, and MALDI-TOF mass spectrometry. The cellulose produced is studied in terms of morphology by scanning electron microscopy, crystallinity by X-Ray diffraction, structure by Fourier transform infrared spectroscopy, and water absorption capacity. BC yield and characteristics of the cellulose produced by the new isolated JF2 are compared with those of the well-known and commonly-used BC producer Komagataeibacter xylinus. Yield of cellulose production was higher for JF2 than for K. xylinus grown on several culture media. JF2 exhibited maximum BC production (1.6 g/L) growing on HS medium supplemented with mannitol. The molecular structure of the produced cellulose was the same for both strains and it was in concordance with that of BC. The nanocellulose fibers produced by JF2 showed a higher degree of crystallinity and a more homogeneous size distribution than those produced by K. xylinus. The results suggested that Komagataeibacter intermedius JF2 could be a suitable candidate as a BC producer for biotechnological applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20(16):3122–3126

    CAS  Article  Google Scholar 

  2. 2.

    Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    CAS  Article  Google Scholar 

  3. 3.

    Castro C, Vesterinen A, Zuluaga R, Caro G, Filpponen I, Rojas OJ, Kortaberria G, Gañán P (2014) In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21(3):1745–1756

    CAS  Article  Google Scholar 

  4. 4.

    Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18(9):1002–1010

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Michael Barnhart D, Su S, Baccaro BE, Banta LM, Farrand SK (2013) CelR, an ortholog of the diguanylate cyclase PleD of caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79(23):7188–7202

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Yang W, Kong Z, Chen W, Wei G (2013) Genetic diversity and symbiotic evolution of rhizobia from root nodules of Coronilla varia. Syst Appl Microbiol 36(1):49–55

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8(11):1997–2011

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Brown AJ (1886) XLIII.—On an acetic ferment which forms cellulose. J Chem Soc Trans 49(0):432–439

    CAS  Article  Google Scholar 

  9. 9.

    Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int J Food Microbiol 106(2):209–212

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y (2012) Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-proteobacteria. Ann Microbiol 62(2):849–859

    CAS  Article  Google Scholar 

  11. 11.

    Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219

    CAS  Article  Google Scholar 

  12. 12.

    Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    CAS  Article  Google Scholar 

  15. 15.

    Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093

    CAS  Article  Google Scholar 

  16. 16.

    Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    CAS  Article  Google Scholar 

  17. 17.

    Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Pirsa S, Shamusi T, Kia EM (2018) Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. J Appl Polym Sci 135(34):46617

    Article  CAS  Google Scholar 

  19. 19.

    Pacheco G, de Mello CV, Chiari-Andréo BG, Isaac VLB, Ribeiro SJL, Pecoraro É, Trovatti E (2018) Bacterial cellulose skin masks—properties and sensory tests. J Cosmet Dermatol 17(5):840–847

    PubMed  Article  Google Scholar 

  20. 20.

    Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol Bioprocess Eng 19(3):534–544

    CAS  Article  Google Scholar 

  22. 22.

    Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145

    CAS  Article  Google Scholar 

  23. 23.

    Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21(5):3585–3595

    CAS  Article  Google Scholar 

  24. 24.

    Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose—Part 2 Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001

    CAS  Article  Google Scholar 

  26. 26.

    Markiewicz E, Hilczer B, Pawlaczyk C (2004) Dielectric and acoustic response of biocellulose. Ferroelectrics 304(1):39–42

    CAS  Article  Google Scholar 

  27. 27.

    Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2014) Acetosulfation of bacterial cellulose: an unexplored promising incipient candidate for highly transparent thin film. Mater Express 4(5):415–421

    CAS  Article  Google Scholar 

  28. 28.

    Yoon SH, Jin H-J, Kook M-C, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4):1280–1284

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Charreau H, Foresti L, Vazquez M A (2012) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80

    Article  Google Scholar 

  30. 30.

    Zhang D, Fakhrullin RF, Özmen M, Wang H, Wang J, Paunov VN, Li G, Huang WE (2011) Functionalization of whole-cell bacterial reporters with magnetic nanoparticles. Microb Biotechnol 4(1):89–97

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Gama M, Gatenholm P, Klemm D (2013) Bacterial nanocellulose: a sophisticated multifunctional material / editado por Miguel Gama, Paul Gatenholm, Dieter Klemm. (CRC Press) Available at: to make nata de coco from coconut water&f=f Accessed July 13, 2018

  32. 32.

    Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21(6):4455–4469

    CAS  Article  Google Scholar 

  34. 34.

    Karina M, Indrarti L, Yudianti R, Syampurwadi A (2012) Alteration of bacterial cellulose properties by diacetylglycerol. Procedia Chem 4:268–274

    CAS  Article  Google Scholar 

  35. 35.

    Rebelo AR, Archer AJ, Chen X, Liu C, Yang G, Liu Y (2018) Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci Technol Adv Mater 19(1):203–211

    CAS  Article  Google Scholar 

  36. 36.

    Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91

    CAS  Article  Google Scholar 

  37. 37.

    Jahan F, Kumar V, Rawat G, Saxena RK (2012) Production of microbial cellulose by a bacterium isolated from fruit. Appl Biochem Biotechnol 167(5):1157–1171

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Semjonovs P, Ruklisha M, Paegle L, Saka M, Treimane R, Skute M, Rozenberga L, Vikele L, Sabovics M, Cleenwerck I (2017) Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl Microbiol Biotechnol 101(3):1003–1012

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    AydIn YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98(3):1065–1075

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Karahan AG, Akoǧlu A, Çakir I, Kart A, Lütfü Çakmakçi M, Uygun A, Göktepe F (2011) Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from turkish vinegar. J Appl Polym Sci 121(3):1823–1831

    CAS  Article  Google Scholar 

  41. 41.

    Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11(1):123–129

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Valera MJ, Torija MJ, Mas A, Mateo E (2015) Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl Microbiol Biotechnol 99(3):1349–1361

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Brenner DJ, Staley JT (2005) Bergey’s manual of systematic bacteriology. In: Garrity G, Brenner DJ, Krieg NR, Staley JR (eds) The proteobacteria. Part B, the gammaproteobacteria, (Vol. 2, Springer, Berlin)

    Google Scholar 

  44. 44.

    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    CAS  Article  Google Scholar 

  45. 45.

    Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine micro-organisms during storage. Lett Appl Microbiol 30(2):136–141

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr Microbiol 57(5):449–453

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Suwanposri A, Yukphan P, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Technol 7(1):70–82

    CAS  Google Scholar 

  48. 48.

    Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Pérez R, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193(10):2670–2671

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Sievers M, Swings J (2005) In: Garrity G (ed) Family Acetobacteraceae. Bergey’s manual of systematic bacteriology, 2nd Edn. Springer, Boston, pp 41–95

    Google Scholar 

  50. 50.

    Andrés-Barrao C, Benagli C, Chappuis M, Ortega Pérez R, Tonolla M, Barja F (2013) Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol 36(2):75–81

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Boesch C, Trček J, Sievers M, Teuber M (1998) Acetobacter intermedius sp. nov. Syst Appl Microbiol 21(2):220–229

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, Gómez C, Gañán P, Rojas OJ, Castro C (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10(6):639

    PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Castro C, Zuluaga R, Álvarez C, Putaux J-L, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89(4):1033–1037

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocoll 8(5):419–430

    CAS  Article  Google Scholar 

  55. 55.

    Mamlouk D, Gullo M (2013) Acetic Acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53(4):377–384

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92(2):2012–2017

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YK, Cheng KC (2016) Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr Polym 151:827–833

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Tyagi N, Suresh S (2012) Isolation and characterization of cellulose producing bacterial strain from orange pulp. Adv Mater Res 626:475–479

    Article  CAS  Google Scholar 

  59. 59.

    Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80

    CAS  Article  Google Scholar 

  60. 60.

    Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 04(02):1–10

    Article  CAS  Google Scholar 

  61. 61.

    Keshk SM, Sameshima K (2006) Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme Microb Technol 40(1):4–8

    CAS  Article  Google Scholar 

  62. 62.

    Kuo C-H, Chen J-H, Liou B-K, Lee C-K (2016) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 53:98–103

    CAS  Article  Google Scholar 

  63. 63.

    Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102

    CAS  Article  Google Scholar 

  65. 65.

    Moosavi-Nasab M, Yousefi A (2011) Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol 9(2):94–101

    CAS  Google Scholar 

  66. 66.

    Rani MU, Rastogi NK, Anu Appaiah KA (2011) Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract—an agro-industry waste. J Microbiol Biotechnol 21(7):739–745

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Tolvaj L, Faix O (1995) Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* Color measurements 1. Effect of UV light. Holzforschung 49(5):397–404

    CAS  Article  Google Scholar 

  68. 68.

    Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. BioResources 3(4):1196–1217

    CAS  Google Scholar 

  70. 70.

    French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    CAS  Article  Google Scholar 

  71. 71.

    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23(2):1073–1086

    CAS  Article  Google Scholar 

  73. 73.

    Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21(2):545–554

    CAS  Article  Google Scholar 

  74. 74.

    Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89(2):613–622

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Reiniati I, Hrymak AN, Margaritis A (2017) Kinetics of cell growth and crystalline nanocellulose production by Komagataeibacter xylinus. Biochem Eng J 127:21–31

    CAS  Article  Google Scholar 

  76. 76.

    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30

    Article  Google Scholar 

  78. 78.

    Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8(OCT):2027

  79. 79.

    Cousins S, Brown R (1997) X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38:897–902

    CAS  Article  Google Scholar 

  80. 80.

    Huang H-C, Chen L-C, Lin S-B, Hsu C-P, Chen H-H (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101(15):6084–6091

    CAS  PubMed  Article  Google Scholar 

Download references


This work was financed by the Scientific and Technological Research Council (MINECO, Spain), grants CTQ2017-84966-C2-2-R and CTQ2014-59632-R, and by the Pla de Recerca de Catalunya, grant 2014SGR-534 00327.

Author information



Corresponding author

Correspondence to Josefina Martínez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández, J., Morena, A.G., Valenzuela, S.V. et al. Microbial Cellulose from a Komagataeibacter intermedius Strain Isolated from Commercial Wine Vinegar. J Polym Environ 27, 956–967 (2019).

Download citation


  • Bacterial cellulose
  • Strain selection
  • Komagataeibacter intermedius
  • Mannitol
  • Pellicle physicochemical properties