Abstract
In this study a new bacterial cellulose (BC) producer isolated from commercial vinegar is identified as Komagataeibacter intermedius JF2 based on the examination of general taxonomical characteristics, 16S rDNA sequence analysis, and MALDI-TOF mass spectrometry. The cellulose produced is studied in terms of morphology by scanning electron microscopy, crystallinity by X-Ray diffraction, structure by Fourier transform infrared spectroscopy, and water absorption capacity. BC yield and characteristics of the cellulose produced by the new isolated JF2 are compared with those of the well-known and commonly-used BC producer Komagataeibacter xylinus. Yield of cellulose production was higher for JF2 than for K. xylinus grown on several culture media. JF2 exhibited maximum BC production (1.6 g/L) growing on HS medium supplemented with mannitol. The molecular structure of the produced cellulose was the same for both strains and it was in concordance with that of BC. The nanocellulose fibers produced by JF2 showed a higher degree of crystallinity and a more homogeneous size distribution than those produced by K. xylinus. The results suggested that Komagataeibacter intermedius JF2 could be a suitable candidate as a BC producer for biotechnological applications.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20(16):3122–3126
Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979
Castro C, Vesterinen A, Zuluaga R, Caro G, Filpponen I, Rojas OJ, Kortaberria G, Gañán P (2014) In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21(3):1745–1756
Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18(9):1002–1010
Michael Barnhart D, Su S, Baccaro BE, Banta LM, Farrand SK (2013) CelR, an ortholog of the diguanylate cyclase PleD of caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79(23):7188–7202
Yang W, Kong Z, Chen W, Wei G (2013) Genetic diversity and symbiotic evolution of rhizobia from root nodules of Coronilla varia. Syst Appl Microbiol 36(1):49–55
Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8(11):1997–2011
Brown AJ (1886) XLIII.—On an acetic ferment which forms cellulose. J Chem Soc Trans 49(0):432–439
Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int J Food Microbiol 106(2):209–212
Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y (2012) Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-proteobacteria. Ann Microbiol 62(2):849–859
Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219
Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598
Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181
Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262
Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093
Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545
Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968
Pirsa S, Shamusi T, Kia EM (2018) Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. J Appl Polym Sci 135(34):46617
Pacheco G, de Mello CV, Chiari-Andréo BG, Isaac VLB, Ribeiro SJL, Pecoraro É, Trovatti E (2018) Bacterial cellulose skin masks—properties and sensory tests. J Cosmet Dermatol 17(5):840–847
Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442
Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol Bioprocess Eng 19(3):534–544
Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145
Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21(5):3585–3595
Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21
Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose—Part 2 Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001
Markiewicz E, Hilczer B, Pawlaczyk C (2004) Dielectric and acoustic response of biocellulose. Ferroelectrics 304(1):39–42
Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2014) Acetosulfation of bacterial cellulose: an unexplored promising incipient candidate for highly transparent thin film. Mater Express 4(5):415–421
Yoon SH, Jin H-J, Kook M-C, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4):1280–1284
Charreau H, Foresti L, Vazquez M A (2012) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80
Zhang D, Fakhrullin RF, Özmen M, Wang H, Wang J, Paunov VN, Li G, Huang WE (2011) Functionalization of whole-cell bacterial reporters with magnetic nanoparticles. Microb Biotechnol 4(1):89–97
Gama M, Gatenholm P, Klemm D (2013) Bacterial nanocellulose: a sophisticated multifunctional material / editado por Miguel Gama, Paul Gatenholm, Dieter Klemm. (CRC Press) Available at: https://books.google.com.my/books?id=kavQ4G0jjfcC&pg=PA145&lpg=PA145&dq=how+to+make+nata+de+coco+from+coconut+water&source=bl&ots=MZoUc12s1A&sig=GlV9t4udxrloKvNE4rOOq6p_gb0&hl=en&sa=X&redir_esc=y#v=onepage&q=how to make nata de coco from coconut water&f=f Accessed July 13, 2018
Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195
Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21(6):4455–4469
Karina M, Indrarti L, Yudianti R, Syampurwadi A (2012) Alteration of bacterial cellulose properties by diacetylglycerol. Procedia Chem 4:268–274
Rebelo AR, Archer AJ, Chen X, Liu C, Yang G, Liu Y (2018) Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci Technol Adv Mater 19(1):203–211
Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91
Jahan F, Kumar V, Rawat G, Saxena RK (2012) Production of microbial cellulose by a bacterium isolated from fruit. Appl Biochem Biotechnol 167(5):1157–1171
Semjonovs P, Ruklisha M, Paegle L, Saka M, Treimane R, Skute M, Rozenberga L, Vikele L, Sabovics M, Cleenwerck I (2017) Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl Microbiol Biotechnol 101(3):1003–1012
AydIn YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98(3):1065–1075
Karahan AG, Akoǧlu A, Çakir I, Kart A, Lütfü Çakmakçi M, Uygun A, Göktepe F (2011) Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from turkish vinegar. J Appl Polym Sci 121(3):1823–1831
Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11(1):123–129
Valera MJ, Torija MJ, Mas A, Mateo E (2015) Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl Microbiol Biotechnol 99(3):1349–1361
Brenner DJ, Staley JT (2005) Bergey’s manual of systematic bacteriology. In: Garrity G, Brenner DJ, Krieg NR, Staley JR (eds) The proteobacteria. Part B, the gammaproteobacteria, (Vol. 2, Springer, Berlin)
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794
Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine micro-organisms during storage. Lett Appl Microbiol 30(2):136–141
Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr Microbiol 57(5):449–453
Suwanposri A, Yukphan P, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Technol 7(1):70–82
Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Pérez R, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193(10):2670–2671
Sievers M, Swings J (2005) In: Garrity G (ed) Family Acetobacteraceae. Bergey’s manual of systematic bacteriology, 2nd Edn. Springer, Boston, pp 41–95
Andrés-Barrao C, Benagli C, Chappuis M, Ortega Pérez R, Tonolla M, Barja F (2013) Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol 36(2):75–81
Boesch C, Trček J, Sievers M, Teuber M (1998) Acetobacter intermedius sp. nov. Syst Appl Microbiol 21(2):220–229
Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, Gómez C, Gañán P, Rojas OJ, Castro C (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10(6):639
Castro C, Zuluaga R, Álvarez C, Putaux J-L, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89(4):1033–1037
Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocoll 8(5):419–430
Mamlouk D, Gullo M (2013) Acetic Acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53(4):377–384
Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92(2):2012–2017
Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YK, Cheng KC (2016) Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr Polym 151:827–833
Tyagi N, Suresh S (2012) Isolation and characterization of cellulose producing bacterial strain from orange pulp. Adv Mater Res 626:475–479
Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80
Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 04(02):1–10
Keshk SM, Sameshima K (2006) Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme Microb Technol 40(1):4–8
Kuo C-H, Chen J-H, Liou B-K, Lee C-K (2016) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 53:98–103
Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422
Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102
Moosavi-Nasab M, Yousefi A (2011) Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol 9(2):94–101
Rani MU, Rastogi NK, Anu Appaiah KA (2011) Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract—an agro-industry waste. J Microbiol Biotechnol 21(7):739–745
Tolvaj L, Faix O (1995) Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* Color measurements 1. Effect of UV light. Holzforschung 49(5):397–404
Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85
El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. BioResources 3(4):1196–1217
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941
Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23(2):1073–1086
Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21(2):545–554
Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89(2):613–622
Reiniati I, Hrymak AN, Margaritis A (2017) Kinetics of cell growth and crystalline nanocellulose production by Komagataeibacter xylinus. Biochem Eng J 127:21–31
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10
Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30
Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8(OCT):2027
Cousins S, Brown R (1997) X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38:897–902
Huang H-C, Chen L-C, Lin S-B, Hsu C-P, Chen H-H (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101(15):6084–6091
Acknowledgements
This work was financed by the Scientific and Technological Research Council (MINECO, Spain), grants CTQ2017-84966-C2-2-R and CTQ2014-59632-R, and by the Pla de Recerca de Catalunya, grant 2014SGR-534 00327.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fernández, J., Morena, A.G., Valenzuela, S.V. et al. Microbial Cellulose from a Komagataeibacter intermedius Strain Isolated from Commercial Wine Vinegar. J Polym Environ 27, 956–967 (2019). https://doi.org/10.1007/s10924-019-01403-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-019-01403-4


