Skip to main content
Log in

Enrichment and Recovery of Cr(VI) from Aqueous Solution via a Monolithic Loofah Sponge Modified by Tannins and Arginine

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a monolithic loofah sponge (LS) matrix, which was pretreated by hemicellulase and decorated by amino and guanidine, was successfully endowed with two functions: adsorption and recovery for Cr(VI). As an adsorbent, the modified LS (LS–TAA) has a high adsorption capacity (327.91 mg/g) for Cr(VI), and can be handily reused because of its integrity, good mechanical strength and convenient separation from aqueous solution. As a carrier, the residue of Cr-loaded LS–TAA was discovered to be pure Cr2O3 nanoparticles after calcination. The effect of hemicellulase pretreatment and influencing factors, adsorption kinetics, thermodynamics and isotherm adsorption models were investigated. The samples were characterized by various means including SEM, EDX, FT–IR, XRD, XPS and TEM. The results demonstrated that the LS–TAA should be viewed as a low-cost environment functional material with application potential to treat Cr-polluted wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nayab S, Farrukh A, Oluz Z, Tuncel E, Tariq SR, Rahman HU, Kirchhoff K, Duran H, Yameen B (2014) Design and fabrication of branched polyamine functionalized mesoporous silica: an efficient absorbent for water remediation. Acs Appl Mater Interfaces 6(6):4408–4417

    Article  CAS  PubMed  Google Scholar 

  2. Frollini E, Leão AL, Mattoso LHC, Rowell RM, Han JS, Rowell JS (2000) Characterization and factors effecting fiber properties. Embrapa Instrumentação Agropecuária, São Carlos

    Google Scholar 

  3. Gupta VK, Pathania D, Agarwal S, Sharma S (2014) Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber. Carbohydr Polym 111(20):556–566

    Article  CAS  PubMed  Google Scholar 

  4. Jiang W, Cai Q, Xu W, Yang M, Cai Y, Dionysiou DD, O’Shea KE (2014) Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environ Sci Technol 48(14):8078–8085

    Article  CAS  PubMed  Google Scholar 

  5. Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35(5):1125–1134

    Article  CAS  PubMed  Google Scholar 

  6. Mello JLD, Freitas RL, Resende ARR (2014) Silva, Equilibrium, thermodynamic, and kinetic of Cr(VI) adsorption using a modified and unmodified bentonite clay. Int J Min Sci Technol 24(4):525–535

    Article  CAS  Google Scholar 

  7. Gorchev HG, Ozolins G (2004) WHO guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  8. Magnacca G, Allera A, Montoneri E, Celi L, Benito DE, Gagliardi LG, Gonzalez MC, Mártire DO, Carlos L (2014) Novel magnetite nanoparticles coated with waste-sourced biobased substances as sustainable and renewable adsorbing materials. Acs Sustain Chem Eng 2(6):1518–1524

    Article  CAS  Google Scholar 

  9. Yan H, Li H, Tao X, Li K, Yang H, Li A, Xiao S, Cheng R (2014) Rapid removal and separation of iron(II) and manganese(II) from micropolluted water using magnetic graphene oxide. Acs Appl Mater Interfaces 6(12):9871–9880

    Article  CAS  PubMed  Google Scholar 

  10. Kyzas GZ, Bomis G, Kosheleva RI, Efthimiadou EK, Favvas EP, Kostoglou M, Mitropoulos AC (2019) Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem Eng J 356:91–97

    Article  CAS  Google Scholar 

  11. Tian X, Wang W, Wang Y, Komarneni S, Yang C (2015) Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI). Microporous Mesoporous Mater 207:46–52

    Article  CAS  Google Scholar 

  12. Kyzas GZ, Deliyanni EA, Mitropoulos AC, Matis KA (2018) Hydrothermally produced activated carbons from zero-cost green sources for cobalt ions removal. Desalination Water Treat 123:288–299

    Article  CAS  Google Scholar 

  13. Nandeshwar SN, Mahakalakar AS, Gupta RR, Kyzas GZ (2016) Green activated carbons from different waste materials for the removal of iron from real wastewater samples of Nag River, India. J Mol Liq 216:688–692

    Article  CAS  Google Scholar 

  14. Wittbrodt PR, Palmer CD (1995) Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ Sci Technol 29(1):255–263

    Article  Google Scholar 

  15. Wittbrodt PR, Palmer CD (1996) Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ Sci Technol 30(8):2470–2477

    Article  Google Scholar 

  16. WITTBRODT PR, PALMER CD (1997) Reduction of Cr (VI) by soil humic acids. Eur J Soil Sci 48(1):151–162

    Article  CAS  Google Scholar 

  17. Loehr R (2012) Agricultural waste management: problems, processes, and approaches. Elsevier, Amsterdam

    Google Scholar 

  18. Cecen B, Kozaci LD, Yuksel M, Ustun O, Ergur BU, Havitcioglu H (2016) Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-l-lactic acid with chondrocyte-like cells. Mater Sci Eng C 69:437–446

    Article  CAS  Google Scholar 

  19. Tang X, Zhang Q, Liu Z, Pan K, Dong Y, Li Y (2014) Removal of Cu(II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions. J Mol Liq 191(191):73–78

    Article  CAS  Google Scholar 

  20. Ghali L, Msahli S, Zidi M, Sakli F (2009) Effect of pre-treatment of Luffa fibres on the structural properties. Mater Lett 63(1):61–63

    Article  CAS  Google Scholar 

  21. Akhtar N, Saeed A, Iqbal M (2003) Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresour Technol 88(2):163–165

    Article  CAS  PubMed  Google Scholar 

  22. Shen J, Xie YM, Huang X, Zhou S, Dong R (2013) Behaviour of luffa sponge material under dynamic loading. Int J Impact Eng 57(9):17–26

    Article  Google Scholar 

  23. Tanobe VO, Sydenstricker TH, Munaro M, Amico SC (2005) A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym Testing 24(4):474–482

    Article  CAS  Google Scholar 

  24. Siqueira G, Bras J, Dufresne A (2008) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. Bioresources 5(2):727–740

    Google Scholar 

  25. Luo T, Tian X, Yang C, Luo W, Nie Y, Wang Y (2017) Polyethylenimine functionalized corn bract, an agricultural waste material, for efficient removal and recovery of Cr (VI) from aqueous solution J Agric Food Chem 65(33):7153–7158

    Article  CAS  PubMed  Google Scholar 

  26. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45

    Article  CAS  Google Scholar 

  27. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724

    Article  PubMed  CAS  Google Scholar 

  28. Fengel D, Wegener G, Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  29. Hahn FC (1935) Etherification of cellulose. US Patent No. 2,010,818

  30. Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review, Biomacromolecules 12(6):1956–1972

    Article  CAS  PubMed  Google Scholar 

  31. Kennedy JF (1985) Cellulose and its derivatives: chemistry, biochemistry, and applications. Wiley, New York

    Google Scholar 

  32. Pasquini D, Teixeira ED, Curvelo AAD, Belgacem M (2008) Dufresne, Alain, Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68(1):193–201

    Article  CAS  Google Scholar 

  33. Pasquini D, Belgacem MN, Gandini A, Curvelo AA (2006) Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J Colloid Interface Sci 295(1):79–83

    Article  CAS  PubMed  Google Scholar 

  34. Tsuzuki T, Mccormick PG (2000) Synthesis of Cr2O3 nanoparticles by mechanochemical processing. J Nanopart Res 2(4):375–380

    Article  CAS  Google Scholar 

  35. Ho YS, Ng JCY, Mckay G (2000) Kinetics of pollutant sorption by biosorbents. Rev Sep Purif Rev 29(2):189–232

    CAS  Google Scholar 

  36. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  37. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44(2):265–268

    Article  CAS  Google Scholar 

  38. Wu FC, Tseng RL, Juang RS (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150(2):366–373

    Article  CAS  Google Scholar 

  39. Tan IAW, Hameed BH, Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J 127(1–3):111–119

    Article  CAS  Google Scholar 

  40. Giles CH, D’Silva AP, Easton IA (1974) A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J Colloid Interface Sci 47(3):766–778

    Article  CAS  Google Scholar 

  41. Luo WJ, Gao Q, Wu XL, Zhou CG (2014) Removal of cationic dye (methylene blue) from aqueous solution by humic acid-modified expanded perlite: experiment and theory. Sep Sci Technol 49(15):2400–2411

    Article  CAS  Google Scholar 

  42. Wang SG, Liu XW, Gong WX, Nie W, Gao BY, Yue QY (2007) Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. J Chem Technol Biotechnol 82(8):698–704

    Article  CAS  Google Scholar 

  43. Khan AA, Singh RP (1987) Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H +. Na + and Ca 2 + forms. Colloids Surf 24(1):33–42

    Article  CAS  Google Scholar 

  44. Ozcan A, Ozcan AS, Tunali S, Akar T, Kiran I (2005) Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. J Hazard Mater 124(1–3):200

    Article  PubMed  CAS  Google Scholar 

  45. Schroeder LR, Gentile VM, Atalla RH (1985) Nondegradative preparation of amorphous cellulose. J Wood Chem Technol 6(1):1–14

    Article  Google Scholar 

  46. And KM, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107(10):2394–2403

    Article  CAS  Google Scholar 

  47. Shi W, Zhai YY, Qiang G, Luo WJ, Hua X, Zhou CG (2013) Highly efficient removal of acid red 18 from aqueous solution by magnetically retrievable chitosan/carbon nanotube: batch study, isotherms, kinetics, and thermodynamics. J Chem Eng Data 59(1):39–51

    Google Scholar 

  48. Luo W, Gao Q, Wu X, Zhou C (2014) Removal of cationic dye (methylene blue) from aqueous solution by humic acid-modified expanded perlite: experiment and theory. Sep Sci Technol 49(15):2400–2411

    Article  CAS  Google Scholar 

  49. Lequin S, Chassagne D, Karbowiak T, Gougeon R, Brachais L, Bellat JP (2010) Adsorption equilibria of water vapor on cork. J Agric Food Chem 58(6):3438

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F (2009) Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res 43(12):3067

    Article  CAS  PubMed  Google Scholar 

  51. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered Graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462

    Article  CAS  PubMed  Google Scholar 

  52. Gao Q, Hua J, Li R, Xing Z, Pang L, Zhang M, Xu L, Wu G (2017) Radiation-induced graft polymerization for the preparation of a highly efficient UHMWPE fibrous adsorbent for Cr(VI) removal. Radiat Phys Chem 130:92–102

    Article  CAS  Google Scholar 

  53. Kara A, Demirbel E, Tekin N, Osman B, Beşirli N (2015) Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies. J Hazard Mater 286:612–623

    Article  CAS  PubMed  Google Scholar 

  54. Fu X, Yang H, Lu G, Tu Y, Wu J (2015) Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution. Mater Sci Semicond Process 39:362–370

    Article  CAS  Google Scholar 

  55. Ji M, Su X, Zhao Y, Qi W, Wang Y, Chen G, Zhang Z (2015) Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism. Appl Surf Sci 344:128–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge precious support provided by the National Natural Science Fund of ‘Study on the Control of Catalytic Ozonation and Bromate Formation by Surface Performance Regulation of Fe-Co/Mn Based Catalysts (No. 2018033022)’, and the fund of ‘Study on Preparation and Performance of Biomass Macromolecular Composites (No. 2017036019)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Luo, T., Mu, J. et al. Enrichment and Recovery of Cr(VI) from Aqueous Solution via a Monolithic Loofah Sponge Modified by Tannins and Arginine. J Polym Environ 27, 618–631 (2019). https://doi.org/10.1007/s10924-019-01370-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01370-w

Keywords

Navigation