Skip to main content

Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film

Abstract

The aim of this work was to enhance the mechanical properties and durability of rice starch (RS)-based film by incorporating carboxymethyl cellulose derived from durian rind (CMCd). Mechanical and thermal properties, swellability, permeability (oxygen and water), color, opacity, thermal stability and biodegradability of the films were determined. Fourier transform infrared (FTIR) and X-ray diffraction techniques were used to demonstrate interactions between films components and their compatibility. Incorporation of the CMCd into the RS-based film caused a decreased lightness, redness and whiteness index but increased transparency, yellowness and total color difference among the blended films and RS film. An increase of tensile strength for all RS/CMCd blended films without change of elongation at break was also observed. Decomposition temperature of the blended films was lower than the RS film while thermal stability was higher. All blended films provided higher equilibrium swelling ratio than the RS film. Incorporation of CMCd did not influence the water vapor and oxygen permeability of the blended films. The FTIR analysis confirmed the interactions between the –OH groups of RS and the COO– groups of CMCd. Scaning electron microscopy analysis represented homogenious cross-sectional surface of all films. The RS, CMCd and RS/CMCd 50:50 films were tested in simulated compost environmental conditions to study their biodegradability. The RS/CMCd 50:50 films showed lower evolved CO2 and %mineralization than the RS film.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Adv Drug Deliv Rev 107:333–366

    Article  CAS  Google Scholar 

  2. Alves V, Costa N, Hilliou L, Larotonda F, Gonçalves M, Sereno A, Coelhoso I (2006) Desalination 199:331–333

    Article  CAS  Google Scholar 

  3. Li Y, Shoemaker CF, Ma J, Shen X, Zhong F (2008) Food Chem 109:616–623

    Article  CAS  Google Scholar 

  4. Bourtoom T, Chinnan MS (2008) LWT-Food Sci Technol 41:1633–1641

    Article  CAS  Google Scholar 

  5. Tongdeesoontorn W, Mauer L, Wongruong S, Sriburi P, Rachtanapun P (2011) Chem Cent J 5:1–8

    Article  Google Scholar 

  6. Ghanbarzadeh B, Almasi H, Entezami AA (2011) Ind Crop Prod 33:229–235

    Article  CAS  Google Scholar 

  7. Janjarasskul T, Krochta JM (2010) Annu Rev Food Sci Technol 1:415–448

    Article  CAS  Google Scholar 

  8. Wittaya T (ed) (2012) Rice starch-based biodegradable films: properties enhancement. Structure and function of food engineering. InTech, London

    Google Scholar 

  9. Al-Hassan AA, Norziah MH (2012) Food Hydrocolloid 26:108–117

    Article  CAS  Google Scholar 

  10. Mendes JF et al (2016) Carbohyd Polym 137:452–458

    Article  CAS  Google Scholar 

  11. Saberi B, Thakur R, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE (2016) Ind Crop Prod 86:342–352

    Article  CAS  Google Scholar 

  12. Ghanbarzadeh B, Almasi H, Entezami AA (2010) Innov Food Sci Emerg Technol 11:697–702

    Article  CAS  Google Scholar 

  13. Mathew S, Brahmakumar M, Abraham TE (2006) Biopolymers 82:176–187

    Article  CAS  Google Scholar 

  14. Charpentier D, Mocanu G, Carpov A, Chapelle S, Merle L, Muller G (1997) Carbohyd Polym 32:177–186

    Article  Google Scholar 

  15. Ma X, Chang PR, Yu J (2008) Carbohyd Polym 72:369–375

    Article  CAS  Google Scholar 

  16. Rachtanapun P, Eitssayeam S, Pengpat K (2010) Adv Mat Res 93–94:17–21

    Google Scholar 

  17. Rachtanapun P, Kasetsart J (2009) Nat Sci 43:259–266

    CAS  Google Scholar 

  18. Togrul H, Arslan N (2003) Carbohyd Polym 54:73–82

    Article  CAS  Google Scholar 

  19. Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Carbohyd Polym 64:312–318

    Article  CAS  Google Scholar 

  20. Rachtanapun P, Kumthai S, Mulkarat N, Pintajam N, Suriyatem R (2015) IOP Conference Series: Materials Science and Engineering 87:012081

    Article  Google Scholar 

  21. Rachtanapun P, Rattanapanone N (2011) J Appl Polym Sci 122:3218–3226

    Article  CAS  Google Scholar 

  22. Rachtanapun P, Luangkamin S, Tanprasert K, Suriyatem R (2012) LWT-Food Sci Technol 48:52–58

    Article  CAS  Google Scholar 

  23. Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  24. ASTM-D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken

    Google Scholar 

  25. Suriyatem R, Auras RA, Rachtanapun P (2018) Ind Crop Prod 122:37–48

    Article  CAS  Google Scholar 

  26. ASTM-D3985-05 (2005) Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. ASTM International, West Conshohocken

    Google Scholar 

  27. ASTM-E96/E9M-16 (2016) Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken

    Google Scholar 

  28. ASTM-D5338-15 (2015) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures. ASTM International, West Conshohocken

    Google Scholar 

  29. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Polym Degrad Stab 137:251–271

    Article  CAS  Google Scholar 

  30. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Thomas Fernandez R (2006) Polym Test 25:1006–1016

    Article  CAS  Google Scholar 

  31. Ban W, Song J, Argyropoulos DS, Lucia LA (2006) J Appl Polym Sci 100:2542–2548

    Article  CAS  Google Scholar 

  32. Hu D, Wang H, Wang L (2016) LWT-Food Sci Technol 65:398–405

    Article  CAS  Google Scholar 

  33. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohyd Polym 60:283–289

    Article  CAS  Google Scholar 

  34. Detyothin S (2012) Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends. Michigan State University, East Lansing

    Google Scholar 

  35. Enrione J, Osorio F, Pedreschi F, Hill S (2010) Food Bioprocess Tech 3:791–796

    Article  CAS  Google Scholar 

  36. He J, Wang Y, Cui S, Gao Y, Wang S (2010) Polym Bull 65:395–409

    Article  CAS  Google Scholar 

  37. Yoon S-D, Chough S-H, Park H-R (2007) J Appl Polym Sci 106:2485–2493

    Article  CAS  Google Scholar 

  38. Krochta JM, De-Mulder CLC (1997) Food Technol 51:61–74

    Google Scholar 

  39. Almenar E, Auras R (eds) (2010) Permeation, sorption, and diffusion in poly(lactic acid). Poly(lactic acid). Wiley, New York

    Google Scholar 

  40. Gaudin S, Lourdin D, Forssell PM, Colonna P (2000) Carbohyd Polym 43:33–37

    Article  CAS  Google Scholar 

  41. Forssell P, Lahtinen R, Lahelin M, Myllärinen P (2002) Carbohyd Polym 47:125–129

    Article  CAS  Google Scholar 

  42. Dias AB, Muller CMO, Larotonda FDS, Laurindo JB (2010) J Cereal Sci 51:213–219

    Article  CAS  Google Scholar 

  43. Dashipour A et al (2015) Int J Biol Macromol 72:606–613

    Article  CAS  Google Scholar 

  44. Dadfar SMM, Kavoosi G (2015) Polym Compos 36:145–152

    Article  CAS  Google Scholar 

  45. Tongdeesoontorn W, Mauer LJ, Wongruong S, Rachtanapun P (2009) As J Food Agro-Ind 2:501–514

    Google Scholar 

  46. Jahit IS, Nazmi NNM, Isa MIN, Sarbon NM (2016) Int Food Res J 23:1068–1074

    CAS  Google Scholar 

  47. Adinugraha MP, Marseno DW, Hayadi (2005) Carbohyd Polym 62:164–169

    Article  CAS  Google Scholar 

  48. Duan B, Sun P, Wang X, Yang C (2011) Starch-Stärke 63:528–535

    Article  CAS  Google Scholar 

  49. Tong Q, Xiao Q, Lim L-T (2008) Food Res Int 41:1007–1014

    Article  CAS  Google Scholar 

  50. Piñeros-Hernandez D, Medina-Jaramillo C, López-Córdoba A, Goyanes S (2017) Food Hydrocoll 63:488–495

    Article  Google Scholar 

  51. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1–24

    Article  Google Scholar 

  52. Wang XY, Su JF (2014) Mater Sci Technol 30:534–539

    Article  CAS  Google Scholar 

  53. Medina Jaramillo C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Carbohyd Polym 151:150–159

    Article  CAS  Google Scholar 

  54. ASTM-D6400-12 (2012) Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. ASTM International, West Conshohocken

    Google Scholar 

Download references

Acknowledgements

This work was supported by Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0063/2555) and the Graduate School and the Faculty of Agro-Industry, Chiang Mai University. We wish to thank Center of Excellence in Materials Science and Technology, Chiang Mai University for financial support under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University. This research work was partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornchai Rachtanapun.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suriyatem, R., Auras, R.A. & Rachtanapun, P. Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film. J Polym Environ 27, 286–298 (2019). https://doi.org/10.1007/s10924-018-1343-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1343-z

Keywords