Skip to main content
Log in

Preparation of Polymer Microparticles Through Non-aqueous Suspension Polycondensations: Part III—Degradation of PBS Microparticles in Different Aqueous Environments

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present work investigated the degradation of poly(butylene succinate) (PBS) in different aqueous media, as PBS microparticles are intended for use in personal care and cosmetic applications. Degradation tests were performed for the first time at different conditions of salinity, pH and temperature for two types of PBS: microparticles produced through suspension polycondensations and commercial pellets produced through bulk polycondensations. As shown experimentally, rates of PBS degradation were sensitive to modification of degradation conditions, being faster at higher temperatures, at acidic conditions and at alkaline conditions. However, PBS degradation was not very sensitive to the presence of salts, although degradation rates were shown to be higher in real sea water samples. Additionally, rates of PBS degradation were shown to depend significantly on PBS properties and morphology. Based on the obtained experimental data, a model was proposed to evaluate the effects of degradation temperature and particle morphology on the rates of PBS degradation in sea water, providing suitable fits for the available data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bergmann M, Gutow L, Klages M (2015) Marine anthropogenic litter. Springer International Publishing, Cham

    Book  Google Scholar 

  2. Setälä O, Norkko J, Lehtiniemi M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 102:95–101. https://doi.org/10.1016/j.marpolbul.2015.11.053

    Article  CAS  PubMed  Google Scholar 

  3. Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics? Int J Eng Res Innov 3:59–64

    Google Scholar 

  4. Kanemura C, Nakashima S, Hotta A (2012) Mechanical properties and chemical structures of biodegradable poly(butylene-succinate) for material reprocessing. Polym Degrad Stab 97:972–980. https://doi.org/10.1016/j.polymdegradstab.2012.03.015

    Article  CAS  Google Scholar 

  5. Ren M, Song J, Song C et al (2005) Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J Polym Sci B 43:3231–3241. https://doi.org/10.1002/polb.20539

    Article  CAS  Google Scholar 

  6. Zhang Y, Lu B, Lv F et al (2012) Effect of processing conditions on poly(butylene succinate) foam materials. J Polym Sci B 126:756–761. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  7. Aeschelmann F, Carus M (2015) Biobased Building blocks and polymers in the world: capacities, production, and applications-status quo and trends towards 2020. Ind Biotechnol 11:154–159. https://doi.org/10.1089/ind.2015.28999.fae

    Article  Google Scholar 

  8. Zhao JH, Wang XQ, Zeng J et al (2005) Biodegradation of poly(butylene succinate) in compost. J Appl Polym Sci 97:2273–2278. https://doi.org/10.1002/app.22009

    Article  CAS  Google Scholar 

  9. MORGAN PW (1962) Low-temperature polycondensation processes. American Chemical Society, Washington, DC, pp 191–199

    Book  Google Scholar 

  10. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344. https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  11. Dutra L, Nele S, Pinto M JC (2018) A novel approach for the preparation of poly(butylene succinate) microparticles. Macromol Symp 381(1):1800118

    Article  CAS  Google Scholar 

  12. Dutra L, Nele S, Pinto M JC (2018) Preparation of polymer microparticles through non-aqueous suspension polycondensations. Part IIeffects of operating variables on properties of poly(butylene succinate). Macromol React Eng. https://doi.org/10.1002/mren.201800039

    Article  Google Scholar 

  13. Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151:342–350. https://doi.org/10.1016/j.cej.2009.04.014

    Article  CAS  Google Scholar 

  14. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2%3C89::AID-PI86%3E3.0.CO;2-F

    Article  CAS  Google Scholar 

  15. Goujard L, Roumanet P-J, Barea B et al (2016) Evaluation of the effect of chemical or enzymatic synthesis methods on biodegradability of polyesters. J Polym Environ 24:64–71. https://doi.org/10.1007/s10924-015-0742-7

    Article  CAS  Google Scholar 

  16. Lindström A, Albertsson AC, Hakkarainen M (2004) Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate). Polym Degrad Stab 83:487–493. https://doi.org/10.1016/j.polymdegradstab.2003.07.001

    Article  CAS  Google Scholar 

  17. Pohanish RP (2015) Sittig’s handbook of pesticides and agricultural chemicals. Elsevier, Amsterdam, pp 738–768

    Book  Google Scholar 

  18. Ahn BD, Kim SH, Kim YH, Yang JS (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci 82:2808–2826

    Article  CAS  Google Scholar 

  19. Kint DPR, Alla A, Deloret E et al (2003) Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate) block copolymers. Polymer 44:1321–1330. https://doi.org/10.1080/00380768.2001.10408366

    Article  CAS  Google Scholar 

  20. Zhu QY, He YS, Zeng JB et al (2011) Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Mater Chem Phys 130:943–949. https://doi.org/10.1016/j.matchemphys.2011.08.012

    Article  CAS  Google Scholar 

  21. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E et al (2016) Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polym Compos 37:407–421. https://doi.org/10.1002/pc.23194

    Article  CAS  Google Scholar 

  22. Kim HS, Kim HJ, Lee JW, Choi IG (2006) Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stab 91:1117–1127. https://doi.org/10.1016/j.polymdegradstab.2005.07.002

    Article  CAS  Google Scholar 

  23. Phua YJ, Lau NS, Sudesh K et al (2012) Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354. https://doi.org/10.1016/j.polymdegradstab.2012.05.024

    Article  CAS  Google Scholar 

  24. Hoshino A, Sawada H, Yokota M et al (2001) Influence of weather conditions and soil properties on degradation of biodegradable plastics in soil. Soil Sci Plant Nutr 47:35–43. https://doi.org/10.1080/00380768.2001.10408366

    Article  Google Scholar 

  25. Kasuya K, Takagi K, Ishiwatari S et al (1998) Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degrad Stab 59:327–332. https://doi.org/10.1016/S0141-3910(97)00155-9

    Article  CAS  Google Scholar 

  26. Schwaab M, Pinto JC (2007) Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: problems involving one kinetic constant. Chem Eng Sci 62:2750–2764. https://doi.org/10.1016/j.ces.2007.02.020

    Article  CAS  Google Scholar 

  27. Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50:1873–1896. https://doi.org/10.1080/00207178908953472

    Article  Google Scholar 

  28. Wolfram Research, Inc. (2018) Wolfram Programming Lab, ver 10. Wolfram Research, Inc., Champaign, IL. http://www.wolfram.com/

  29. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

  30. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136

    Article  CAS  PubMed  Google Scholar 

  31. Kim HS, Yang HS, Kim HJ (2005) Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. J Appl Polym Sci 97:1513–1521. https://doi.org/10.1002/app.21905

    Article  CAS  Google Scholar 

  32. Antheunis H, Van Meer JC, Der, De Geus M et al (2009) Improved mathematical model for the hydrolytic degradation of aliphatic polyesters. Macromolecules 42:2462–2471. https://doi.org/10.1021/ma802222m

    Article  CAS  Google Scholar 

  33. Siepmann J, Elkharraz K, Siepmann F, Klose D (2005) How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromol 6:2312–2319. https://doi.org/10.1021/bm050228k

    Article  CAS  Google Scholar 

  34. Solomons TWG, Fryhle CB (2007) Organic chemistry, 9th edn. Wiley India Pvt, Limited

    Google Scholar 

  35. Lucas N, Bienaime C, Belloy C et al (2008) Polymer biodegradation: mechanisms and estimation techniquesa review. Chemosphere 73:429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

    Article  CAS  PubMed  Google Scholar 

  36. Fukushima K, Tabuani D, Dottori M et al (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96:2120–2129. https://doi.org/10.1016/j.polymdegradstab.2011.09.018

    Article  CAS  Google Scholar 

  37. Sailema-Palate GP, Vidaurre A, Campillo AF, Castilla-Cortázar I (2016) A comparative study on poly(ϵ-caprolactone) film degradation at extreme pH values. Polym Degrad Stab 130:118–125. https://doi.org/10.1016/j.polymdegradstab.2016.06.005

    Article  CAS  Google Scholar 

  38. Hakkarainen M, Albertsson AC, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab 52:283–291. https://doi.org/10.1016/0141-3910(96)00009-2

    Article  CAS  Google Scholar 

  39. Mouzakis DE, Zoga H, Galiotis C (2008) Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs). Composites 39:467–475. https://doi.org/10.1016/j.compositesb.2006.10.004

    Article  CAS  Google Scholar 

  40. Cho K, Lee J, Kwon K (2001) Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J Appl Polym Sci 79:1025–1033. https://doi.org/10.1002/1097-4628(20010207)79:6%3C1025::AID-APP50%3E3.0.CO;2-7

    Article  CAS  Google Scholar 

  41. Huang T, Du X, Duan J et al (2017) Poly(ethylene oxide) induced microstructure and hydrolytic degradation behavior changes of poly(butylene succinate). Polym Test 61:8–16. https://doi.org/10.1016/j.polymertesting.2017.05.001

    Article  CAS  Google Scholar 

  42. Schwaab M, Pinto JC (2007) Análise de Dados Experimentais I – Fundamentos de Estatística e Estimação de Parâmetros, 1st edn. e-papers, Rio de Janeiro

    Google Scholar 

  43. Wang Y, Pan J, Han X et al (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29:3393–3401. https://doi.org/10.1016/j.biomaterials.2008.04.042

    Article  CAS  PubMed  Google Scholar 

  44. Heljak MK, Swieszkowski W, Kurzydlowski KJ (2014) Modeling of the degradation kinetics of biodegradable scaffolds: the effects of the environmental conditions. J Appl Polym Sci 131:1–7. https://doi.org/10.1002/app.40280

    Article  CAS  Google Scholar 

  45. Kobayashi S, Naito K (2011) Biodegradation of poly(lactic acid)/ poly(butylene succinate) polymer blends. J Environ Eng 6:861–868. https://doi.org/10.1299/jee.6.861

    Article  Google Scholar 

  46. Partini M, Pantani R (2007) FTIR analysis of hydrolysis in aliphatic polyesters. Polym Degrad Stab 92:1491–1497. https://doi.org/10.1016/j.polymdegradstab.2007.05.009

    Article  CAS  Google Scholar 

  47. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(DL-lactic acid) size dependence. Biomaterials 16:305–311. https://doi.org/10.1016/0142-9612(95)93258-F

    Article  CAS  PubMed  Google Scholar 

  48. Chang M (2015) Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Mar Pollut Bull 101:330–333. https://doi.org/10.1016/j.marpolbul.2015.10.074

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana da Silva Dutra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Dutra, L., de Souza Belan Costa, T., Lobo, V.T.V. et al. Preparation of Polymer Microparticles Through Non-aqueous Suspension Polycondensations: Part III—Degradation of PBS Microparticles in Different Aqueous Environments. J Polym Environ 27, 176–188 (2019). https://doi.org/10.1007/s10924-018-1329-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1329-x

Keywords

Navigation