Skip to main content

Advertisement

Log in

Structure and Properties of Polymer–Polymer Composites Based on Biopolymers and Ultra-High Molecular Weight Polyethylene Obtained via Ethylene In Situ Polymerization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymer–polymer composites (PPC) of biopolymers (starch, cellulose, poly-3-hydroxybutyrate) and ultra-high molecular weight polyethylene (UHMWPE) were obtained by ethylene in situ polymerization (polymerization filling). Ethylene polymerization was carried out in “mild” conditions (25 °C, 0.1 MPa) on a traditional Ziegler–Natta catalyst [TiCl4 + (C2H5)2AlCl], biopolymer-supported. Catalyst activity increases in the presence of polysaccharides depending on their type and quantity. UHMWPE matrix possesses a molecular weight of 1.20–1.65 MDa, melting point of 138–143 °C, high melting enthalpy and a crystallinity of 60–70%. PPCs generally exhibit better tensile properties than neat polyethylene, such as elastic modulus and elongation at break. Thermogravimetric analysis shows a significant decrease in decomposition temperature and the rate of mass loss on both stages of PPC destruction. The photo-oxidative destruction of PPC after UV-irradiation for different periods of time was studied by FTIR and XRD. Carbonyl indices indicate the rate of oxidation to be 3–4 times greater than in neat PE. Prolonged irradiation leads to a considerable increase in crystallinity and crystallite size. Irradiated PPC films show a 90% extent of biofouling by mold fungi, compared to no growth apparent for neat samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Albertsson AC, Karlsson S (1994) In: Griffin G (ed) Chemistry and technology of biodegradable polymers. Blackie, Glasgow

    Google Scholar 

  2. Vasnev VA (1997) Polym Sci Ser B 39:474

    Google Scholar 

  3. Suvorova AI, Tyukova IS, Trufanova EI (2000) Russ Chem Rev 2000 69:451

    Article  CAS  Google Scholar 

  4. Kaseem M, Hamad K, Deri F (2012) Polym Sci Ser A 54:165

    Article  CAS  Google Scholar 

  5. Rogovina SZ, Grachev AV, Aleksanyan KV, Prut EV (2011) Russ J Bioorg Chem 37:791

    Article  CAS  Google Scholar 

  6. Rogovina SZ, Lomakin SM, Aleksanyan KV, Prut EV (2012) Russ J Phys Chem B 6:416

    Article  CAS  Google Scholar 

  7. Rogovina SZ, Aleksanyan KV, Novikov DD, Prut EV, Rebrov AV (2009) Polym Sci Ser A 51:554

    Article  Google Scholar 

  8. Novokshonova LA, Brevnov PN, Grinev VG, Chvalun SN, Lomakin SM, Shchegolikhin AN, Kuznetsov SP (2008) Nanotech Russ 3:330

    Article  Google Scholar 

  9. Pomogailo AD (1988) Polymer immobilized metallocomplex catalysts. Gordon and Breach Science Publishers, New York

    Google Scholar 

  10. Khar’kova EM, Mendeleev DI, Korolev YM, Shklyaruk BF, Gerasin VA, Antipov EM (2013) Polym Sci Ser A 55:493

    Article  CAS  Google Scholar 

  11. Khar’kova EM, Mendeleev DI, Aulov VA, Shklyaruk BF, Gerasin VA, Piryazev AA, Antipov AE (2014) Polym Sci Ser A 56:72

    Article  CAS  Google Scholar 

  12. Novokshonova LA, Meshkova IN (1994) Polym Sci 36:517

    Google Scholar 

  13. Pomogailo AD (2002) Russ Chem Rev 71:1

    Article  CAS  Google Scholar 

  14. Pomogailo AD (1991) IKRF 11:116 (In Russian)

    Google Scholar 

  15. Khar’kova EM, Mendeleev DI, Guseva MA, Shklyaruk BF (2017) Polym Sci Ser B 59:601

    Article  Google Scholar 

  16. Tidjani A, Arnaud R, Dasilva A (1993) J App Polym Sci 47:211

    Article  CAS  Google Scholar 

  17. Hadad D, Geresh S, Sivan A (2005) J Appl Microbiol 98:109

    Article  CAS  Google Scholar 

  18. Corti A, Muniyasamy S, Vitali M, Imam SH, Chiellini E (2010) Polym Degrad Stab 95:1106

    Article  CAS  Google Scholar 

  19. Galuzina TV, Gerasin VA, Doronina NV, Ezhov VA, Trotsenko YA, Kiprianov SV, Ivanov AO, Filatova MP, Shklyaruk BF (2015) Polym Sci Ser A 57:729

    Article  CAS  Google Scholar 

  20. Aleshina LA, Gurtov VA, Meleh NV (2014) Structure and physico-chemical properties of the cellulose and nanocomposites based on them. PSU Publishing, Petrozavodsk (in Russian)

    Google Scholar 

  21. Ammala A, Bateman S, Dean K, Petinakis E (2011) Prog Polym Sci 36:1015

    Article  CAS  Google Scholar 

  22. Ranby BG, Rabek JF (1975) Photodegradation, photo-oxidation, and photostabilization of polymers. Wiley, New York

    Google Scholar 

  23. Kachan AA, Zamotaev PV (1990) Photochemical modification of polyolefins. Naukova Dumka, Kiev

    Google Scholar 

  24. Albertsson AC, Andersson SO, Karlsson (1987) Polym Degrad Stab 18:73

    Article  CAS  Google Scholar 

  25. Zykova AK, Pantyukhov PV, Kolesnikova NN, Monakhova TV, Popov AA (2018) J Polym Environ 26:1343

    Article  CAS  Google Scholar 

  26. Pantyukhov P, Kolesnikova N, Popov A (2016) Polym Compos 2016 37:1461

    Article  CAS  Google Scholar 

  27. Ołdak D, Kaczmarek H, Buffeteau T, Sourisseau C (2005) J Mater Sci 40:4189

    Article  Google Scholar 

  28. Barron D, Birkinshaw C (2008) Polym 49:3111

    Article  CAS  Google Scholar 

  29. Edidin AA, Jewett CW, Kalinowski A, Kwarteng K, Kurtz SM (2000) Biomaterials 21:1451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Mendeleev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khar’kova, E.M., Mendeleev, D.I., Guseva, M.A. et al. Structure and Properties of Polymer–Polymer Composites Based on Biopolymers and Ultra-High Molecular Weight Polyethylene Obtained via Ethylene In Situ Polymerization. J Polym Environ 27, 165–175 (2019). https://doi.org/10.1007/s10924-018-1326-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1326-0

Keywords

Navigation