Skip to main content
Log in

Characterization of Novel and Efficient Poly-3-hydroxybutyrate (PHB) Producing Bacteria Isolated from Rhizospheric Soils

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyhydroxybutyrate (PHB) is an eco-friendly, biodegradable plastic which exhibits properties very similar to the conventional plastic, thus, having high potential for replacing non-degradable conventional polypropylene plastic that is responsible for several environmental problems at global level. The present study focuses on the isolation and characterization of potential novel PHB producers. A total of 194 PHB producing bacteria were isolated from rhizospheric soils of three different crops; and subjected to microscopic, biochemical and molecular characterization studies. Quantification of PHB production exhibited significant amount of PHB accumulation (120–132 mg/ml) by a few isolates (KW-4, MS-6, RoW-1, AW-1 and RoS-4). Fourier transform infrared spectroscopy (FTIR) analysis of PHB extracted from the isolates was found to be comparable to the spectra of standard PHB, thus, establishing the chemical nature of the extracted polymer. Detection of PHB granules by transmission electron microscopy (TEM) confirmed the isolates to be efficient PHB producers. For molecular characterization of the isolates, phbC gene amplification studies were undertaken, which resulted into an amplification product of 1089 bp, representing the complete PHB synthase gene. Using 16S rRNA gene amplification and sequencing, the selected isolates were identified as belonging to four major genera, viz., Bacillus, Lysinibacillus, Clostridium and Klebsiella; however, Bacillus being the predominant genera. Analysis of 16S rDNA sequences showed that a few isolates exhibited significant differences from their nearest neighbours (similarity level ranging between 93 and 99%), thus, strongly suggesting that they might represent novel strains. Some of these probable novel high PHB producers reported in the present study hold high potential to be exploited for further industrial-scale mass production of biodegradable polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sudesh K, Iwata T (2008) Clean-Soil Air Water 36(5–6):433

    Article  CAS  Google Scholar 

  2. Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21–53

    Google Scholar 

  3. Lee SY (1996) Biotechnol Bioeng 49:1–4

    Google Scholar 

  4. Verlinden R, Hill DJ, Kenward MA, William CD, Radeckal I (2007) J Appl Microbiol Rev 102:1437–1449

    Google Scholar 

  5. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Carr NG (1996) Biochem Biophys Acta 120:308

    Google Scholar 

  7. Shimizu H, Sono S, Shioya S, Suga K (1992) In: Furusaki S, Endo I, Matsuno R (eds) Biochemical engineering for 2001. Springer, Tokyo, p 195

    Chapter  Google Scholar 

  8. Nishimura T, Saito T, Tomita K (1978) Arch Microbiol 116:21

    Article  CAS  PubMed  Google Scholar 

  9. Schubert P, Steinbuchel A, Schlegel HG (1988) J Bacteriol 170(12):5837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Postma J, Veen JA, Walter S (1989) Soil Biol Biochem 21:437

    Article  Google Scholar 

  11. Okon Y, Itzigsohn R (1992) FEMS Microbiol Rev 103:131

    CAS  Google Scholar 

  12. Lathwal P, Nehra K, Singh M, Jamdagani P, Rana JS (2015) Pol J Microbiol 64(3):227

    Article  PubMed  Google Scholar 

  13. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williamsons and Wilkins, Baltimore

    Google Scholar 

  14. Rohlf FJ (1993) Applied Biostatistics Inc. Distributed by Exeter Software, Setauket, New York

    Google Scholar 

  15. Law JH, Slepecky RA (1961) J Bacteriol 82:33

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nehra K, Chhabra N, Sidhu PK, Lathwal P, Rana JS (2015) Asian J Microbiol Biotech Environ Sci 17(4):281

    Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  18. Hall TA (1999) Nucl Acids Symp Ser 41:95

    CAS  Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman. DJ (1990) J Mol Biol 215(3):403

    Article  CAS  PubMed  Google Scholar 

  20. Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Nucl Acid Res 25:3389

    Article  CAS  Google Scholar 

  21. Reddy SV, Thirumala M, Mahmood SK (2009) World J Microbiol Biotechnol 25(3):391

    Article  CAS  Google Scholar 

  22. Aly MM, Albureikan MO, Rabey HEI, Kabli SA (2013) Life Sci J 10(4):1884

    Google Scholar 

  23. Mikkili I, Abraham PK, Venkateswarulu TC, John BD, Nath SB, Vidya PK (2014) Int J PharmTech Res 6(2):850

    Google Scholar 

  24. Charen T, Vaishali P, Kaushalya M, Amutha K, Ponnusami V, Gowdhaman D (2014) Int J ChemTech Res 6(5):3197

    Google Scholar 

  25. Mahitha G, Jaya M (2015) Int J Sci Eng Res 6(2):214

    Google Scholar 

  26. Mohapatra S, Mohanta PR, Sarkar B, Daware A, Kumar C, Samantaray DP (2017) Proc Natl Acad Sci India Sect B: Biol Sci 87(2):459

    Article  CAS  Google Scholar 

  27. Chandani SK (2015) Int J Sci Res 3(12):212

    Google Scholar 

  28. Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2013) Int J Biomater 9:752821

    Google Scholar 

  29. Aarthi N, Ramana KV (2010) Int J Environ Sci 1(5):744

    Google Scholar 

  30. Gurubasappa GB, Shivasharana CT, Basappa BK (2015) Eur J Exp Biol 5(3):58

    Google Scholar 

  31. Baei MS, Najafpour GD, Younesi H, Tabandeh F, Eisazadeh H (2009) World Appl Sci J 7(2):157

    Google Scholar 

  32. Singh P, Parmar N (2011) Afr J Biotech 10(24):4907

    CAS  Google Scholar 

  33. Panigrahi S, Badveli U (2013) Int J Eng Sci Invent 2(9):01

    Google Scholar 

  34. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2004) Polymer 45:6547

    Article  CAS  Google Scholar 

  35. Kumar SB, Prabakaran G (2005) Ind J Biotechnol 5:76

    Google Scholar 

  36. Nagamani P, Mahmood SK (2012) Int J Pharm Bio Sci 3(4):695

    CAS  Google Scholar 

  37. Mohapatra S, Samantaray DP, Samantaray SM, Mishra BB, Das S, Majumdar S, Pradhan SK, Rath SN, Rath CC, Akhtar J, Achary KG (2016) Int J Biol Macromol 93:1161

    Article  CAS  PubMed  Google Scholar 

  38. Beeby M, Cho M, Stubbe J, Jensen GJ (2012) J Bacteriol 194(5):1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez JA, Naranjo JM, Higuita JC, Cubitto MA, Cardona CA, Villar MA (2012) Biotechnol Bioprocess Eng 17(2):250

    Article  CAS  Google Scholar 

  40. Kumari P, Dhingra HK (2013) The Bioscan 8(1):109

    CAS  Google Scholar 

  41. Osman YA, Elrazak AA, Khater W, Nashy ES, Mohamadeen A (2015) Int J Appl Sci Biotechnol 3(2):143

    Article  CAS  Google Scholar 

  42. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) J Bacteriol 173(2):697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srilakshmi S, Rao CSVR. (2012) Int J Int Sci Inn Tech 5:24

    Google Scholar 

  44. Singh R (2014) Int J Curr Microbiol Appl Sci 3(6):304

    CAS  Google Scholar 

  45. Mohapatra S, Samantaray DP, Samantaray SM (2014) Int J Curr Microbiol Appl Sci 3(5):680

    Google Scholar 

  46. Emeruwa AC, Hawirko RZ (1973) J Bacteriol 116(2):989

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Mei H, Zheng C, Qian H, Cui C, Fu Y, Su J, Liu Z, Yu Z, He J (2013) Mol Cell Proteom 12(5):1363

    Article  CAS  Google Scholar 

  48. Kumar S, Tamura K, Jakobsen IB, Nei M (2007) Bioinformatics 17:1244

    Article  Google Scholar 

  49. Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) FEMS Microbiol Ecol 67:381

    Article  CAS  PubMed  Google Scholar 

  50. Rehm BH, Steinbuchel A (1999) Int J Biol Macromol 25(1):3

    Article  CAS  PubMed  Google Scholar 

  51. Qi Q, Rehm BHA (2001) Microbiology 147:3353

    Article  CAS  PubMed  Google Scholar 

  52. Kung SS, Chuang YC, Chen CH, Chien CC (2007) Lett Appl Microbiol 44:364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express sincere gratitude to the University Grants Commission, New Delhi, India, for providing the financial support for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Nehra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lathwal, P., Nehra, K., Singh, M. et al. Characterization of Novel and Efficient Poly-3-hydroxybutyrate (PHB) Producing Bacteria Isolated from Rhizospheric Soils. J Polym Environ 26, 3437–3450 (2018). https://doi.org/10.1007/s10924-018-1224-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1224-5

Keywords

Navigation