Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3437–3450 | Cite as

Characterization of Novel and Efficient Poly-3-hydroxybutyrate (PHB) Producing Bacteria Isolated from Rhizospheric Soils

  • Priyanka Lathwal
  • Kiran Nehra
  • Manpreet Singh
  • J. S. Rana
Original Paper
  • 79 Downloads

Abstract

Polyhydroxybutyrate (PHB) is an eco-friendly, biodegradable plastic which exhibits properties very similar to the conventional plastic, thus, having high potential for replacing non-degradable conventional polypropylene plastic that is responsible for several environmental problems at global level. The present study focuses on the isolation and characterization of potential novel PHB producers. A total of 194 PHB producing bacteria were isolated from rhizospheric soils of three different crops; and subjected to microscopic, biochemical and molecular characterization studies. Quantification of PHB production exhibited significant amount of PHB accumulation (120–132 mg/ml) by a few isolates (KW-4, MS-6, RoW-1, AW-1 and RoS-4). Fourier transform infrared spectroscopy (FTIR) analysis of PHB extracted from the isolates was found to be comparable to the spectra of standard PHB, thus, establishing the chemical nature of the extracted polymer. Detection of PHB granules by transmission electron microscopy (TEM) confirmed the isolates to be efficient PHB producers. For molecular characterization of the isolates, phbC gene amplification studies were undertaken, which resulted into an amplification product of 1089 bp, representing the complete PHB synthase gene. Using 16S rRNA gene amplification and sequencing, the selected isolates were identified as belonging to four major genera, viz., Bacillus, Lysinibacillus, Clostridium and Klebsiella; however, Bacillus being the predominant genera. Analysis of 16S rDNA sequences showed that a few isolates exhibited significant differences from their nearest neighbours (similarity level ranging between 93 and 99%), thus, strongly suggesting that they might represent novel strains. Some of these probable novel high PHB producers reported in the present study hold high potential to be exploited for further industrial-scale mass production of biodegradable polymer.

Keywords

Biodegradable plastic FTIR Molecular characterization PHB producing bacteria TEM 

Notes

Acknowledgements

The authors wish to express sincere gratitude to the University Grants Commission, New Delhi, India, for providing the financial support for carrying out this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10924_2018_1224_MOESM1_ESM.pptx (445 kb)
Supplementary material 1. Fig. S1 ac Agarose gel analysis of 16S rRNA gene amplification products (PPTX 444 KB)
10924_2018_1224_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 23 KB)

References

  1. 1.
    Sudesh K, Iwata T (2008) Clean-Soil Air Water 36(5–6):433CrossRefGoogle Scholar
  2. 2.
    Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21–53Google Scholar
  3. 3.
    Lee SY (1996) Biotechnol Bioeng 49:1–4Google Scholar
  4. 4.
    Verlinden R, Hill DJ, Kenward MA, William CD, Radeckal I (2007) J Appl Microbiol Rev 102:1437–1449Google Scholar
  5. 5.
    Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450Google Scholar
  6. 6.
    Carr NG (1996) Biochem Biophys Acta 120:308Google Scholar
  7. 7.
    Shimizu H, Sono S, Shioya S, Suga K (1992) In: Furusaki S, Endo I, Matsuno R (eds) Biochemical engineering for 2001. Springer, Tokyo, p 195CrossRefGoogle Scholar
  8. 8.
    Nishimura T, Saito T, Tomita K (1978) Arch Microbiol 116:21CrossRefGoogle Scholar
  9. 9.
    Schubert P, Steinbuchel A, Schlegel HG (1988) J Bacteriol 170(12):5837CrossRefGoogle Scholar
  10. 10.
    Postma J, Veen JA, Walter S (1989) Soil Biol Biochem 21:437CrossRefGoogle Scholar
  11. 11.
    Okon Y, Itzigsohn R (1992) FEMS Microbiol Rev 103:131Google Scholar
  12. 12.
    Lathwal P, Nehra K, Singh M, Jamdagani P, Rana JS (2015) Pol J Microbiol 64(3):227CrossRefGoogle Scholar
  13. 13.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williamsons and Wilkins, BaltimoreGoogle Scholar
  14. 14.
    Rohlf FJ (1993) Applied Biostatistics Inc. Distributed by Exeter Software, Setauket, New YorkGoogle Scholar
  15. 15.
    Law JH, Slepecky RA (1961) J Bacteriol 82:33Google Scholar
  16. 16.
    Nehra K, Chhabra N, Sidhu PK, Lathwal P, Rana JS (2015) Asian J Microbiol Biotech Environ Sci 17(4):281Google Scholar
  17. 17.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  18. 18.
    Hall TA (1999) Nucl Acids Symp Ser 41:95Google Scholar
  19. 19.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman. DJ (1990) J Mol Biol 215(3):403CrossRefGoogle Scholar
  20. 20.
    Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Nucl Acid Res 25:3389CrossRefGoogle Scholar
  21. 21.
    Reddy SV, Thirumala M, Mahmood SK (2009) World J Microbiol Biotechnol 25(3):391CrossRefGoogle Scholar
  22. 22.
    Aly MM, Albureikan MO, Rabey HEI, Kabli SA (2013) Life Sci J 10(4):1884Google Scholar
  23. 23.
    Mikkili I, Abraham PK, Venkateswarulu TC, John BD, Nath SB, Vidya PK (2014) Int J PharmTech Res 6(2):850Google Scholar
  24. 24.
    Charen T, Vaishali P, Kaushalya M, Amutha K, Ponnusami V, Gowdhaman D (2014) Int J ChemTech Res 6(5):3197Google Scholar
  25. 25.
    Mahitha G, Jaya M (2015) Int J Sci Eng Res 6(2):214Google Scholar
  26. 26.
    Mohapatra S, Mohanta PR, Sarkar B, Daware A, Kumar C, Samantaray DP (2017) Proc Natl Acad Sci India Sect B: Biol Sci 87(2):459CrossRefGoogle Scholar
  27. 27.
    Chandani SK (2015) Int J Sci Res 3(12):212Google Scholar
  28. 28.
    Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2013) Int J Biomater 9:752821Google Scholar
  29. 29.
    Aarthi N, Ramana KV (2010) Int J Environ Sci 1(5):744Google Scholar
  30. 30.
    Gurubasappa GB, Shivasharana CT, Basappa BK (2015) Eur J Exp Biol 5(3):58Google Scholar
  31. 31.
    Baei MS, Najafpour GD, Younesi H, Tabandeh F, Eisazadeh H (2009) World Appl Sci J 7(2):157Google Scholar
  32. 32.
    Singh P, Parmar N (2011) Afr J Biotech 10(24):4907Google Scholar
  33. 33.
    Panigrahi S, Badveli U (2013) Int J Eng Sci Invent 2(9):01Google Scholar
  34. 34.
    Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2004) Polymer 45:6547CrossRefGoogle Scholar
  35. 35.
    Kumar SB, Prabakaran G (2005) Ind J Biotechnol 5:76Google Scholar
  36. 36.
    Nagamani P, Mahmood SK (2012) Int J Pharm Bio Sci 3(4):695Google Scholar
  37. 37.
    Mohapatra S, Samantaray DP, Samantaray SM, Mishra BB, Das S, Majumdar S, Pradhan SK, Rath SN, Rath CC, Akhtar J, Achary KG (2016) Int J Biol Macromol 93:1161CrossRefGoogle Scholar
  38. 38.
    Beeby M, Cho M, Stubbe J, Jensen GJ (2012) J Bacteriol 194(5):1092CrossRefGoogle Scholar
  39. 39.
    Lopez JA, Naranjo JM, Higuita JC, Cubitto MA, Cardona CA, Villar MA (2012) Biotechnol Bioprocess Eng 17(2):250CrossRefGoogle Scholar
  40. 40.
    Kumari P, Dhingra HK (2013) The Bioscan 8(1):109Google Scholar
  41. 41.
    Osman YA, Elrazak AA, Khater W, Nashy ES, Mohamadeen A (2015) Int J Appl Sci Biotechnol 3(2):143CrossRefGoogle Scholar
  42. 42.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) J Bacteriol 173(2):697CrossRefGoogle Scholar
  43. 43.
    Srilakshmi S, Rao CSVR. (2012) Int J Int Sci Inn Tech 5:24Google Scholar
  44. 44.
    Singh R (2014) Int J Curr Microbiol Appl Sci 3(6):304Google Scholar
  45. 45.
    Mohapatra S, Samantaray DP, Samantaray SM (2014) Int J Curr Microbiol Appl Sci 3(5):680Google Scholar
  46. 46.
    Emeruwa AC, Hawirko RZ (1973) J Bacteriol 116(2):989Google Scholar
  47. 47.
    Wang J, Mei H, Zheng C, Qian H, Cui C, Fu Y, Su J, Liu Z, Yu Z, He J (2013) Mol Cell Proteom 12(5):1363CrossRefGoogle Scholar
  48. 48.
    Kumar S, Tamura K, Jakobsen IB, Nei M (2007) Bioinformatics 17:1244CrossRefGoogle Scholar
  49. 49.
    Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) FEMS Microbiol Ecol 67:381CrossRefGoogle Scholar
  50. 50.
    Rehm BH, Steinbuchel A (1999) Int J Biol Macromol 25(1):3CrossRefGoogle Scholar
  51. 51.
    Qi Q, Rehm BHA (2001) Microbiology 147:3353CrossRefGoogle Scholar
  52. 52.
    Kung SS, Chuang YC, Chen CH, Chien CC (2007) Lett Appl Microbiol 44:364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyDeenbandhu Chhotu Ram University of Science & TechnologySonepatIndia

Personalised recommendations