Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3316–3333 | Cite as

Properties of Poly(Vinyl Alcohol)/Chitosan Nanocomposite Films Reinforced with Oil Palm Empty Fruit Bunch Amorphous Lignocellulose Nanofibers

  • Achmad SolikhinEmail author
  • Yusuf Sudo Hadi
  • Muh Yusram Massijaya
  • Siti Nikmatin
  • Shigehiko Suzuki
  • Yoichi Kojima
  • Hikaru Kobori
Original Paper


The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.


Reinforcement PVA/chitosan polymer blends Nanocomposite films Amorphous LCNFs 



We sincerely acknowledge to the Doctoral Programme for Outstanding Undergraduate Students (PDSU) Secretariat, because of the greatest financial support [Grant No. 180/SP2H/LT/DRM/III/2016 Directorate of Higher Education (DIKTI), Ministry of Research, Technology, and Higher Education (Menristekdikti), Republic of Indonesia]. We also thank some laboratory staffs at PT Perkebunan Kelapa Sawit Nusantara VIII, Shizuoka University, Indonesian Institute of Sciences, Forest Products Research and Development Centre, Bogor Agricultural University, Bandung Institute of Technology, Gadjah Mada University, Universitas Indonesia, and National Nuclear Energy Agency for the assistance of this research.

Supplementary material

10924_2018_1215_MOESM1_ESM.png (118 kb)
Supplementary material 1 (PNG 117 KB)
10924_2018_1215_MOESM2_ESM.png (113 kb)
Supplementary material 2 (PNG 113 KB)
10924_2018_1215_MOESM3_ESM.jpg (198 kb)
Supplementary material 3 (JPG 198 KB)
10924_2018_1215_MOESM4_ESM.jpg (159 kb)
Supplementary material 4 (JPG 158 KB)
10924_2018_1215_MOESM5_ESM.jpg (150 kb)
Supplementary material 5 (JPG 149 KB)
10924_2018_1215_MOESM6_ESM.jpg (133 kb)
Supplementary material 6 (JPG 132 KB)
10924_2018_1215_MOESM7_ESM.jpg (204 kb)
Supplementary material 7 (JPG 204 KB)
10924_2018_1215_MOESM8_ESM.xlsx (216 kb)
Supplementary material 8 (XLSX 215 KB)
10924_2018_1215_MOESM9_ESM.xlsx (228 kb)
Supplementary material 9 (XLSX 227 KB)
10924_2018_1215_MOESM10_ESM.xlsx (226 kb)
Supplementary material 10 (XLSX 226 KB)
10924_2018_1215_MOESM11_ESM.xlsx (216 kb)
Supplementary material 11 (XLSX 215 KB)
10924_2018_1215_MOESM12_ESM.xlsx (218 kb)
Supplementary material 12 (XLSX 217 KB)
10924_2018_1215_MOESM13_ESM.xlsx (229 kb)
Supplementary material 13 (XLSX 229 KB)
10924_2018_1215_MOESM14_ESM.pdf (39 kb)
Supplementary material 14 (PDF 38 KB)
10924_2018_1215_MOESM15_ESM.pdf (40 kb)
Supplementary material 15 (PDF 40 KB)
10924_2018_1215_MOESM16_ESM.pdf (38 kb)
Supplementary material 16 (PDF 38 KB)
10924_2018_1215_MOESM17_ESM.pdf (40 kb)
Supplementary material 17 (PDF 39 KB)
10924_2018_1215_MOESM18_ESM.pdf (40 kb)
Supplementary material 18 (PDF 39 KB)
10924_2018_1215_MOESM19_ESM.pdf (38 kb)
Supplementary material 19 (PDF 37 KB)
10924_2018_1215_MOESM20_ESM.pdf (40 kb)
Supplementary material 20 (PDF 39 KB)
10924_2018_1215_MOESM21_ESM.png (30 kb)
Supplementary material 21 (PNG 29 KB)
10924_2018_1215_MOESM22_ESM.png (30 kb)
Supplementary material 22 (PNG 30 KB)
10924_2018_1215_MOESM23_ESM.png (30 kb)
Supplementary material 23 (PNG 29 KB)
10924_2018_1215_MOESM24_ESM.png (30 kb)
Supplementary material 24 (PNG 29 KB)
10924_2018_1215_MOESM25_ESM.png (30 kb)
Supplementary material 25 (PNG 30 KB)
10924_2018_1215_MOESM26_ESM.png (30 kb)
Supplementary material 26 (PNG 30 KB)
10924_2018_1215_MOESM27_ESM.png (32 kb)
Supplementary material 27 (PNG 31 KB)
10924_2018_1215_MOESM28_ESM.bmp (4.7 mb)
Supplementary material 28 (BMP 4801 KB)
10924_2018_1215_MOESM29_ESM.bmp (4.7 mb)
Supplementary material 29 (BMP 4801 KB)
10924_2018_1215_MOESM30_ESM.bmp (4.7 mb)
Supplementary material 30 (BMP 4801 KB)
10924_2018_1215_MOESM31_ESM.bmp (4.7 mb)
Supplementary material 31 (BMP 4801 KB)
10924_2018_1215_MOESM32_ESM.bmp (4.7 mb)
Supplementary material 32 (BMP 4801 KB)
10924_2018_1215_MOESM33_ESM.bmp (4.7 mb)
Supplementary material 33 (BMP 4801 KB)
10924_2018_1215_MOESM34_ESM.bmp (4.7 mb)
Supplementary material 34 (BMP 4801 KB)


  1. 1.
    Choo K, Ching CY, Chuah CH, Julai S, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644–660CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F (2014) Preparation and properties of poly(vinyl alcohol)/chitosan blend bio-nanocomposites reinforced by cellulose nanocrystals. Chin J Polym Sci 201532:1620–1627CrossRefGoogle Scholar
  3. 3.
    Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Opanasopit P (2012) Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. Int Wound J 11(2):215–222CrossRefPubMedGoogle Scholar
  4. 4.
    Mahmoodi NM, Shourijeh ZM (2015) Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers Polym 16:1861–1869CrossRefGoogle Scholar
  5. 5.
    Kermani AS, Esfandiary N (2016) Synthesis and characterization of new biodegradable chitosan/polyvinyl alcohol/cellulose nanocomposite. Adv Nanopart 5:18–26CrossRefGoogle Scholar
  6. 6.
    Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO–Ag multifunctional nanosized filler. Int J Nanomed 9:1909–1917CrossRefGoogle Scholar
  7. 7.
    Parparita E, Natalia C, Cheaburu C (2012) Vasile. Morphological, thermal and rheological characterization of polyvinyl alcohol/chitosan blends. Cellul Chem Technol 46:571 – 581Google Scholar
  8. 8.
    Rescignano N, Fortunatin E, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99:47–58CrossRefPubMedGoogle Scholar
  9. 9.
    Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179CrossRefPubMedGoogle Scholar
  10. 10.
    Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S (2014) Enhanced thermal and mechanical properties of PVA compositesformed with filamentous nanocellulose fibrils. Carbohydr Polym 113:403–410CrossRefPubMedGoogle Scholar
  11. 11.
    Mandal A, Chakrabarty D (2015) Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films. Carbohydr Polym 134:240–250CrossRefPubMedGoogle Scholar
  12. 12.
    Panaitescu DM, Frone AN, Ghiurea M, Chiulan I (2015) Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Ind Crops Prod 70:170–177CrossRefGoogle Scholar
  13. 13.
    Hafdani FN, Sadhegenia NA (2011) Review on application of chitosan as a natural antimicrobial. Int J Med Health Biomed Bioeng Pharm Eng 5:2011Google Scholar
  14. 14.
    Pavaloiu RD, Guzun AS, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124CrossRefPubMedGoogle Scholar
  15. 15.
    Azeredo HMC, Mattoso LHC, Bustillos RJA, Filho GC, Munford ML, Wood D, Mchugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:1CrossRefGoogle Scholar
  16. 16.
    Park SC, Nam JP, Kim JH, Kim YM, Nah JW, Jang MK (2015) Antimicrobial action of water-soluble β -chitosan against clinical multi-drug resistant bacteria. Int J Mol Sci 16:7995–8007CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rafique A, Zia KM, Zuber M, Tabasum S, Rehman S (2016) Chitosan functionalized poly (vinyl alcohol) for prospects biomedical and industrial applications: a review. Int J Biol Macromol 87:141–154CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosanhydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82CrossRefPubMedGoogle Scholar
  19. 19.
    Solikhin A, Hadi YS, Massijaya MY, Nikmatin S (2016) Basic properties of oven-heat treated oil palm empty fruit bunch stalk fibers. Bioresources 11:2224–2237CrossRefGoogle Scholar
  20. 20.
    Nikmatin S (2012) Bionanocomposite of polypropylene reinforced cellulose nanoparticles biomass of rattan synthetic substitute composite by motorcycle. Doctoral dissertation, Bogor Agricultural Univesity, BogorGoogle Scholar
  21. 21.
    Osong SH (2014) Mechanical pulp based nano-ligno-cellulose production, characterisation and their effect on paper properties. Master thesis, Mid Sweden University, SundsvallGoogle Scholar
  22. 22.
    Kojima Y, Isa A, Kobori H, Suzuki S, Ito H, Makise R, Okamoto M (2014) Evaluation of binding effects in wood flour board containing ligno-cellulose nanofibers. Materials 7:6853–6864CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Iwamoto S, Yamamoto S, Lee S-H, Ito H, Endo T (2015) Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7:6919–6929CrossRefGoogle Scholar
  24. 24.
    Iwamoto S, Endo T (2015T. Endo. 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride. ACS Macro Lett 4:80–83CrossRefGoogle Scholar
  25. 25.
    Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21(3):1573–1580CrossRefGoogle Scholar
  26. 26.
    Solikhin A, Hadi YS, Massijaya MY, Nikmatin S (2016) Novel isolation of empty fruit bunch lignocellulose nanofibers using different vibration milling times-assisted multimechanical stages. Waste Biomass Valoriz 8(7):2451–2462CrossRefGoogle Scholar
  27. 27.
    Kang Y, Ahn Y, Lee SH, Hong JH, Ku MK, Kim H (2013) Lignocellulosic nanofiber prepared by alkali treatment and electrospinning using ionic liquid. Fiber Polym 14:530–536CrossRefGoogle Scholar
  28. 28.
    Osong SH, Norgren S. Engstrand P, Lundberg M, Hansen P (2014) Crill: a novel technique to characterize nano – ligno – cellulose. Nord Pulp Pap Res J 29:190–194CrossRefGoogle Scholar
  29. 29.
    Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composite with cellulose nanofibers obtained by ultrasonication. Bioresources 6:487–512Google Scholar
  30. 30.
    Hu Y, Li D, Deng Q, Wang Y, Lin D (2012) Novel poly(vinyl alcohol) nanocomposites reinforced with nano cellulose fibrils isolated from plants by mechanochemical treatment. Appl Mech Mater 174–177:870–876CrossRefGoogle Scholar
  31. 31.
    Fortunati E, Puglia D, Luzi F, Santulli C, Kenny JM, Torre L (2013) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydr Polym 97:825–836CrossRefPubMedGoogle Scholar
  32. 32.
    Kakroodi AR, Cheng S, Sain M, Asiri A (2014) Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. J Nanomater 2014:139Google Scholar
  33. 33.
    Ching YC, Rahman A, Ching KY, Sukiman NL, Chuah CH (2015) Preparation and characterization of polyvinyl alcohol based composite reinforced with nanocellulose and nanosilica. Bioresouces 10:3364–3377Google Scholar
  34. 34.
    Sirviö JA, Honkaniemi S, Visanko M, Liimatainen H (2015) Composite films of polyvinyl alcohol and bifunctional crosslinking cellulose nanocrystals. ACS Appl Mater Interfaces 7(35):1969–19699CrossRefGoogle Scholar
  35. 35.
    Dehnad D, Djomeh ZE, Mirzaei H, Jafari SM, Dadashi S (2014) Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydr Polym 105:222–228CrossRefPubMedGoogle Scholar
  36. 36.
    Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293CrossRefPubMedGoogle Scholar
  37. 37.
    Zeid RAE, Hassan EA, Bettaieb F, Khiari R, Hassan M (2015) Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites. J Nanomater 16(1):172Google Scholar
  38. 38.
    Bajpai SK, Chand N, Ahuja S (2015) Investigation of curcumin release from chitosan/cellulose microcrystals (CMC) antimicrobial films. Int J Biol Macromol 79:40–448Google Scholar
  39. 39.
    Solikhin A, Hadi YS, Massijaya MY, Nikmatin S (2016) Morphological and chemo-thermal changes of oven-heat treated oil palm empty fruit bunch fibers during dry disk milling. J Indian Acad Wood Sci 14(1):1–17Google Scholar
  40. 40.
    Kiziltas EE, Kiziltas A, Bollind SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohydr Polym 127:381–389CrossRefPubMedGoogle Scholar
  41. 41.
    Hamid SBA, Zain SK, Das R, Centi G (2015) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349 – 355CrossRefPubMedGoogle Scholar
  42. 42.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 6:220 – 227CrossRefGoogle Scholar
  43. 43.
    Guimaraes M, Botarom VR, Novack KM, Teixeira FG, Tonoli GHD (2015) Starch/PVA – based nanocomposites reinforced with bamboo nanofibrils. Ind Crops Prod 70:72–83CrossRefGoogle Scholar
  44. 44.
    Reid SM, Villalobos M, Cranston DE (2016) Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale 8:12247–12257CrossRefPubMedGoogle Scholar
  45. 45.
    Virtanen S, Vartianen J, Setala H, Tammelin T, Vouti S (2014) Modified nanofibrillated cellulose–polyvinyl alcohol films with improved mechanical performance. RSC Adv 4(22):11343–11350CrossRefGoogle Scholar
  46. 46.
    Zhou YM, Fu YS, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym Lett 6:794–804CrossRefGoogle Scholar
  47. 47.
    Tripathi S, Mehrotra GK, Dutta PK (2010) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food packaging applications. Carbohydr Polym 72:711–716CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 285:855 – 863CrossRefGoogle Scholar
  49. 49.
    Zheng H, Du Z, Yu J, Huang R, Zhang L (2007) Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J Appl Polym Sci 80:2558 – 2565CrossRefGoogle Scholar
  50. 50.
    Mandal A, Chakrabarty D (2015) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462 – 473CrossRefGoogle Scholar
  51. 51.
    Lee S-Y, Mohan DJ, Kang I-A, Doh G-H, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatmentand filler loading. Fibers Polym 10:77–82CrossRefGoogle Scholar
  52. 52.
    Santos C, Silva CJ, Buttel Z, Guimaraes R, Pereira SB, Tamagnini P, Zille A (2014) Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr Polym 99:584–592CrossRefPubMedGoogle Scholar
  53. 53.
    Ostadhossein F, Mahmoudi N, Cid MG, Tamjid E, Martos FJN, Cuadrado BS, Paniza JML, Simchi A (2015) Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexibel platform for wound dressing. Materials 8:6401 – 6418CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li CM, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385 – 4395CrossRefGoogle Scholar
  55. 55.
    Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40CrossRefGoogle Scholar
  56. 56.
    Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–57CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Achmad Solikhin
    • 1
    Email author
  • Yusuf Sudo Hadi
    • 1
  • Muh Yusram Massijaya
    • 1
  • Siti Nikmatin
    • 2
  • Shigehiko Suzuki
    • 3
  • Yoichi Kojima
    • 3
  • Hikaru Kobori
    • 3
  1. 1.Department of Forest Products, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  2. 2.Department of Physics, Faculty of Mathematics and Natural SciencesBogor Agricultural UniversityBogorIndonesia
  3. 3.Department of Environment and Forest Resources Science, Faculty of AgricultureShizuoka UniversityShizuoka-shiJapan

Personalised recommendations