Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3129–3138 | Cite as

Water Remediation: PVA-Based Magnetic Gels as Efficient Devices to Heavy Metal Removal

  • María Pía Areal
  • M. Lorena Arciniegas
  • Fernanda Horst
  • Verónica Lassalle
  • Francisco H. Sánchez
  • Vera A. Alvarez
  • Jimena S. GonzalezEmail author
Original Paper


Scientific and technological researches are devoted to obtain materials capable of retaining different kinds of pollutants, contributing to contamination solutions. In this context, hydrogels have emerged as great candidates because of their excellent absorption properties as well as good mechanical, thermal and chemical properties. More specifically, ferrogels (magnetic gels) present the extra advantage of being easily manipulated by a permanent magnet. Here, we present the results derived from the application of ferrogels as efficient tools to extract heavy metal pollutants from wastewater samples. The gels were prepared following the method of freezing and thawing of a polyvinyl alcohol aqueous solution with magnetic nanoparticles coated with polyacrylic acid. Ferrogels were fully characterized and their ability to retain Cu2+ and Cd2+, as model heavy metals, was studied. Thus kinetics and mechanisms of adsorption were evaluated and modeled. The concentration of MNPs on the PVA matrix was key to improve the adsorption capability (approximately the double of retention is improved by the MNPs addition). The adsorption kinetics was determined as pseudo-second order model, whereas the Langmuir model was the most appropriate to explain the behavior of the gels. Finally reuse ability was evaluated to determine the real potential of these materials, the ferrogels demonstrated high efficiency up to about five cycles, retaining about 80–90% of their initial adsorption capability. All the results indicated that the materials are promising candidates able to compete with the commercial technology regarding to water remediation.


Ferrogel Heavy metal removal Freeze–thaw Magnetic gel PVA 



This study was supported by CONICET (National Scientific and Technical Research Council), ANPCyT (National Agency of Scientific and Technology Promotion), UNMdP (National University of Mar del Plata), UNS (University of South) and UNLP (University of La Plata).

Supplementary material

10924_2018_1197_MOESM1_ESM.docx (131 kb)
Supplementary material 1 (DOCX 131 KB)


  1. 1.
    Corcoran E (2010) Sick water?: the central role of wastewater management in sustainable development: a rapid response assessment. UNEP/Earthprint, ArendalGoogle Scholar
  2. 2.
    Woodard F (2001) Industrial waste treatment handbook. Butterworth-Heinemann, OxfordGoogle Scholar
  3. 3.
    Le NL, Nunes SP (2016) Sustain Mater Technol 7:1–28Google Scholar
  4. 4.
    Osińska M (2017) J Sol-Gel Sci Technol 81:678–692CrossRefGoogle Scholar
  5. 5.
    Sabzi M, Samadi N, Abbasi F, Reza Mahdavinia G, Babaahmadi M (2017) Mater Sci Eng C 74:374–381CrossRefGoogle Scholar
  6. 6.
    Hassan C, Peppas N (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods, biopolymers PVA hydrogels, anionic polymerisation nanocomposites. Springer, Berlin HeidelbergGoogle Scholar
  7. 7.
    Gonzalez JS, Martinez YN, Castro GR, Alvarez VA (2016) Adv Mater Lett 7:640–645CrossRefGoogle Scholar
  8. 8.
    Gonzalez JS, Ponce A, Alvarez VA (2016) Adv Mater Lett 7:979–985CrossRefGoogle Scholar
  9. 9.
    Santos A, de Oliveira FWF, Silva FHA, Maria DA, Ardisson JD, de Almeida WA, Macêdo HEL, Palmieri MB, Franco (2012) Chem Eng J 210:432–443CrossRefGoogle Scholar
  10. 10.
    Bruvera I, Hernández R, Mijangos C, Goya G (2015) J Magn Magn Mater 377:446–451CrossRefGoogle Scholar
  11. 11.
    Muzzalupo R, Tavano L, Rossi CO, Picci N, Ranieri GA (2015) Colloids Surf B 134:273–278CrossRefGoogle Scholar
  12. 12.
    Luo X, Zeng J, Liu S, Zhang L (2015) Bioresour Technol 194:403–406CrossRefPubMedGoogle Scholar
  13. 13.
    Reza Mahdavinia G, Etemadi H (2014) Mater Sci Eng C 459:250–260CrossRefGoogle Scholar
  14. 14.
    Reza Mahdavinia G, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M (2016) Carbohydr Polym 147:379–391CrossRefGoogle Scholar
  15. 15.
    Reza Mahdavinia G, Soleymani M, Etemadi H, Sabzi M, Atlas Z (2018) Int J Biol Macromol 107:719–729CrossRefGoogle Scholar
  16. 16.
    Song W, Liu M, Hu R, Tan X, Li J (2014) Chem Eng J 246:268–276CrossRefGoogle Scholar
  17. 17.
    Zrínyi M, Barsi L, Büki A (1997) Polym Gels Netw 5:415–427CrossRefGoogle Scholar
  18. 18.
    Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) J Colloid Interface Sci 345:234–240CrossRefPubMedGoogle Scholar
  19. 19.
    Xu R, Zhou G, Tang Y, Chu L, Liu C, Zeng Z, Luo S (2015) Chem Eng J 275:179–188CrossRefGoogle Scholar
  20. 20.
    Zheng S, Shin JY, Song SY, Yu SJ, Suh H, Kim I (2014) J Appl Polym Sci 131:40610Google Scholar
  21. 21.
    Ferrari E, Ranucci E, Edlund U, Albertsson A-C (2015) J Appl Polym Sci 132:41695Google Scholar
  22. 22.
    Mahmoud GA, Abdel-Aal SE, Badway NA, Elbayaa AA, Ahmed DF (2017) Polym Bull 74:337–358CrossRefGoogle Scholar
  23. 23.
    Peppas NA, Merrill EW (1976) J Appl Polym Sci 20:1457–1465CrossRefGoogle Scholar
  24. 24.
    Mc Gann MJ, Higginbotham CL, Geever LM, Nugent MJ (2009) Int J Pharm 372:154–161CrossRefPubMedGoogle Scholar
  25. 25.
    Moscoso-Londoño O, Gonzalez JS, Muraca D, Hoppe CE, Alvarez VA, López-Quintela A, Socolovsky LM, Pirota KR (2013) Eur Polym J 49:279–289CrossRefGoogle Scholar
  26. 26.
    Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) Macromolecules 37:1921–1927CrossRefGoogle Scholar
  27. 27.
    Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Mater Sci Eng C 34:54–61CrossRefGoogle Scholar
  28. 28.
    Morris GE, Fornasiero D, Ralston J (2002) Int J Miner Process 67:211–227CrossRefGoogle Scholar
  29. 29.
    Zhou L, He B, Zhang F, Facile (2011) ACS Appl Mater Interfaces 4:192–199CrossRefPubMedGoogle Scholar
  30. 30.
    Lemine O, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, Bououdina M (2012) Superlattices Microstruct 52:793–799CrossRefGoogle Scholar
  31. 31.
    Gonzalez J, Hoppe C, Muraca D, Sánchez F, Alvarez V (2011) Colloid Polym Sci 289:1839–1846CrossRefGoogle Scholar
  32. 32.
    Singha NR, Mahapatra M, Karmakar M, Dutta A, Mondal H, Chattopadhyay PK (2017) Polym Chem 8:6750–6777CrossRefGoogle Scholar
  33. 33.
    Mohammad N, Atassi Y, Tally M (2017) Polym Bull 74:4453CrossRefGoogle Scholar
  34. 34.
    Yan J, Huang Y, Miao Y-E, Tjiu WW, Liu T (2015) J Hazard Mater 283:730–739CrossRefPubMedGoogle Scholar
  35. 35.
    Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Almeida VC, Tambourgi EB (2011) Desalination 275:187–196CrossRefGoogle Scholar
  36. 36.
    Jamnongkan T, Kantarot K, Niemtang K, Pansila PP, Wattanakornsiri A (2014) Trans Nonferrous Met Soc China 24:3386–3393CrossRefGoogle Scholar
  37. 37.
    Zhang D-k, Wang D-g, Duan J-j, Ge S-r (2009) J Bionic Eng 6:22–28CrossRefGoogle Scholar
  38. 38.
    Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014) J Environ Chem Eng 2:1578–1587CrossRefGoogle Scholar
  39. 39.
    Singh T, Singhal R (2014) Desalination Water Treat 52:5611–5628CrossRefGoogle Scholar
  40. 40.
    Chen JH, Lin H, Luo ZH, He YS, Li GP (2011) Desalination 277:265–273CrossRefGoogle Scholar
  41. 41.
    Tang SC, Yin K, Lo IM (2011) J Contaminant Hydrol 125:39–46Google Scholar
  42. 42.
    Hui B, Zhang Y, Ye L (2014) Chem Eng J 235:207–214CrossRefGoogle Scholar
  43. 43.
    Mørup S, Hansen M, Frandsen C (2011) Comprehensive nanoscience and technology. In: Andrews DL, Scholes GD, Wiederrecht GP (eds) Magnetic nanoparticles, vol 12011, Elsevier, Oxford, pp 433–487Google Scholar
  44. 44.
    Bruvera IJ, Mendoza Zélis P, Pilar Calatayud M, Goya GF, Sánchez FH (2015) J Appl Phys 118:184304CrossRefGoogle Scholar
  45. 45.
    Bedanta S, Kleemann W (2009) J Phys D 42:013001CrossRefGoogle Scholar
  46. 46.
    Knobel M, Nunes W, Socolovsky L, De Biasi E, Vargas J, Denardin J (2008) J Nanosci Nanotechnol 8:2836–2857CrossRefPubMedGoogle Scholar
  47. 47.
    Sánchez FH, Zélis PM, Arciniegas ML, Pasquevich GA, van Raap MF (2017) Phys Rev B 95:134421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • María Pía Areal
    • 1
  • M. Lorena Arciniegas
    • 1
  • Fernanda Horst
    • 2
  • Verónica Lassalle
    • 2
  • Francisco H. Sánchez
    • 3
  • Vera A. Alvarez
    • 1
  • Jimena S. Gonzalez
    • 1
    Email author
  1. 1.Institute of Materials Science and Technology (INTEMA)University of Mar del Plata and National Research Council (CONICET)Mar del PlataArgentina
  2. 2.Institute of Chemistry of South (INQUISUR)South National University, National Research Council CONICETBahía BlancaArgentina
  3. 3.Physics Department – Physics Institute of La Plata (IFLP – FCE)University of La Plata, National Research Council CONICETLa PlataArgentina

Personalised recommendations