Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 3086–3096 | Cite as

Novel Biocomposites Based on Sunflower Oil and Alfa Fibers as Renewable Resources

  • Sihem Kadem
  • Ratiba Irinislimane
  • Naima Belhaneche-Bensemra
Original Paper

Abstract

The aim of this work is to develop biocomposites based on modified sunflower oil as resin and short natural fibers from Alfa plants (Stipa tenacissima) as reinforcement. Epoxidized sunflower oil (ESFO) was chemically modified via acrylation reaction to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. Experimental conditions of this modification were optimized by varying styrene, Co and BF3 wt%. The styrene was varied from 30, 40 to 50 wt% while the catalyst (Co) was varied from 0, 0.01, 0.02 to 0.03 wt%. Two different percents of BF3 were considered: 0.5 and 1 wt%. The prepared samples were evaluated according to their appearance and then characterized in terms of tensile properties (stress at break, Young’s modulus and elongation at break) to determine the best ratio of styrene/BF3/Co. Alfa fibers, used as bio-reinforcement, were treated with a 5% NaOH solution and characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and thermo gravimetric analysis (TGA). Biocomposites were prepared by using untreated (UAF) and treated Alfa fibers (TAF) at a ratio of 5 wt% and characterized in terms of tensile properties and morphology by SEM. The best results were obtained with TAF. Then, the ratio of TAF was varied (5, 7.5 and 10 wt%) and the tensile and thermal properties of the biocomposites were characterized. The results showed that the best results were obtained with the ratio of 7.5 wt%.

Keywords

Biocomposites Sunflower oil Alfa fibers Resins Tensile properties 

Notes

Acknowledgements

Funding was provided by Direction Générale de la Recherche Scientifique et du Développement Technologique. The authors would like to express their gratitude to Ms Chehaoui (Laboratoire des Matériaux Polymères, CATEL, Algeria), Professor Benaboura (Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire, USTHB, Algeria), Professor Hadj Hamou (Laboratoire des MatériauxPolymères, USTHB, Algeria), Professor Serier and Dr Timhadjelt (Laboratoire des Revetements, Matériaux et Environnement, UMBB, Algeria) and Mr Alim (CDTA, Algeria) for their help and assistance in the characterizations of samples.

References

  1. 1.
    Carbonell-Verdu A, Bernardi L, Garcia-Garcia D, Sanchez-Nacher L, Balart R (2015) Development of environmentally friendly composite matrices from epoxidized cotton seed oil. Eur Polym J 63(0):1–10.  https://doi.org/10.1016/j.eurpolymj.2014.11.043 CrossRefGoogle Scholar
  2. 2.
    Scala JL, Wool RP (2005) Property analysis of triglyceride-based thermosets. Polymer 46(1):61–69.  https://doi.org/10.1016/j.polymer.2004.11.002 CrossRefGoogle Scholar
  3. 3.
    Khoshnava SM, Rostami R, Ismail M, Rahmat AR, Ogunbode BE (2017) Woven hybrid Biocomposite: mechanical properties of woven kenaf bast fibre/oil palm empty fruit bunches hybrid reinforced poly hydroxybutyrate biocomposite as non-structural building materials. Constr Build Mater 154(Supplement C):155–166.  https://doi.org/10.1016/j.conbuildmat.2017.07.189 CrossRefGoogle Scholar
  4. 4.
    Seniha Güner F, Yağcı Y, Tuncer Erciyes A (2006) Polymers from triglyceride oils. Prog Polym Sci 31(7):633–670.  https://doi.org/10.1016/j.progpolymsci.2006.07.001 CrossRefGoogle Scholar
  5. 5.
    Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7(5–6):421–432.  https://doi.org/10.1023/A:1026583404899 CrossRefGoogle Scholar
  6. 6.
    O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64(9):1135–1145.  https://doi.org/10.1016/j.compscitech.2003.09.024 CrossRefGoogle Scholar
  7. 7.
    Fiore V, Valenza A (2013) Epoxy resins as a matrix material in advanced fibre-reinforced polymer (FRP) composites. Advanced fibre-reinforced polymer (FRP) composites for structural applications. Woodhead Publishing Limited, CambridgeGoogle Scholar
  8. 8.
    Pfister DP, Larock RC (2010) Green composites from a conjugated linseed oil-based resin and wheat straw. Compos A 41(9):1279–1288.  https://doi.org/10.1016/j.compositesa.2010.05.012 CrossRefGoogle Scholar
  9. 9.
    Wool R, Kusefoglu S, Palmese G, Khot S, Zhao R (2000) High modulus polymers and composites from plant oils. Google PatentsGoogle Scholar
  10. 10.
    Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact 19(3):256–271.  https://doi.org/10.1080/1023666X.2014.880016M CrossRefGoogle Scholar
  11. 11.
    Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 79(Supplement C):558–584.  https://doi.org/10.1016/j.rser.2017.05.094 CrossRefGoogle Scholar
  12. 12.
    Dicker PM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: A review of material attributes and complementary applications. Compos A 56(Supplement C):280–289.  https://doi.org/10.1016/j.compositesa.2013.10.014 CrossRefGoogle Scholar
  13. 13.
    Maghchiche A, Haouam A, Immirzi B (2013) Extraction and characterization of Algerian Alfa grass short fibers (Stipa Tenacissima). Chem Chem Technol 7(3):339–344Google Scholar
  14. 14.
    Boubekeur B, Belhaneche-Bensemra N, Massardier V (2015) Valorization of waste jute fibers in developing low-density polyethylene/poly lactic acid bio-based composites. J Reinf Plast Compos 34(8):649–661.  https://doi.org/10.1177/0731684415576354 CrossRefGoogle Scholar
  15. 15.
    Bouiri B, Amrani M (2010) Production of dissolving grade pulp from Alfa. BioResources 5(1):291–302Google Scholar
  16. 16.
    Borchani K, Carrot C, Jaziri M (2015) Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 22(3):1577–1589.  https://doi.org/10.1007/s10570-015-0583-5 CrossRefGoogle Scholar
  17. 17.
    Mabrouk A, Kaddami H, Boufi S, Erchiqui F, Dufresne A (2012) Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19(3):843–853.  https://doi.org/10.1007/s10570-012-9662-z CrossRefGoogle Scholar
  18. 18.
    Rokbi M, Herbelot C, Imad A (2013) Influence du traitement chimique sur le comportement à la rupture du polyester orthophtalique renforcée par des fibres Alfa. 21ème Congrès Français de Mécanique, 26 au 30 août 2013, Bordeaux, France (FR). http://hdl.handle.net/2042/52341
  19. 19.
    Bessadok A, Marais S, Gouanvé F, Colasse L, Zimmerlin I, Roudesli S, Métayer M (2007) Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Compos Sci Technol 67(3–4):685–697.  https://doi.org/10.1016/j.compscitech.2006.04.013 CrossRefGoogle Scholar
  20. 20.
    Brahim SB, Cheikh RB (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Key Eng Mater 67(1):140–147.  https://doi.org/10.1016/j.compscitech.2005.10.006 Google Scholar
  21. 21.
    Pickering KL (2011) 6—Assessing fibre surface treatment to improve the mechanical properties of natural fibre composites. In: Zafeiropoulos NE (ed) Interface engineering of natural fibre composites for maximum performance. Woodhead Publishing, Cambridge, pp 186–202CrossRefGoogle Scholar
  22. 22.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596.  https://doi.org/10.1016/j.progpolymsci.2012.04.003 CrossRefGoogle Scholar
  23. 23.
    Mosiewicki MA, Aranguren MI (2013) A short review on novel biocomposites based on plant oil precursors. Eur Polym J 49(6):1243–1256.  https://doi.org/10.1016/j.eurpolymj.2013.02.034 CrossRefGoogle Scholar
  24. 24.
    Irinislimane R, Belhaneche-Bensemra N (2012) Application of fourier transform infrared (FT-IR) spectroscopy to the study of the modification of epoxidized sunflower oil by acrylation. Appl Spectrosc 66(12):1420–1425.  https://doi.org/10.1366/12-06599 CrossRefGoogle Scholar
  25. 25.
    Andjelkovic DD, Valverde M, Henna P, Li F, Larock RC (2005) Novel thermosets prepared by cationic copolymerization of various vegetable oils—synthesis and their structure–property relationships. Polymer 46(23):9674–9685.  https://doi.org/10.1016/j.polymer.2005.08.022 CrossRefGoogle Scholar
  26. 26.
    Shogren RL, Petrovic Z, Liu Z, Erhan SZ (2004) Biodegradation behavior of some vegetable oil-based polymers. J Polym Environ 12(3):173–178.  https://doi.org/10.1023/B:JOOE.0000038549.73769.7d CrossRefGoogle Scholar
  27. 27.
    May C (1987) Epoxy resins: chemistry and technology. CRC Press, Boca RatonGoogle Scholar
  28. 28.
    Bernhardt PV, Lawrance GA (2003) 6.1—Cobalt. In: Meyer JAMJ (ed) Comprehensive coordination chemistry II. Pergamon, Oxford, pp 1–145Google Scholar
  29. 29.
    Benaniba M, Belhaneche-Bensemra N, Gelbard G (2001) Stabilizing effect of epoxidized sunflower oil on the thermal degradation of poly (vinyl chloride). Polym Degrad Stab 74(3):501–505.  https://doi.org/10.1016/S0141-3910(01)00170-7 CrossRefGoogle Scholar
  30. 30.
    Benaniba M, Belhaneche-Bensemra N, Gelbard G (2007) Kinetics of tungsten-catalyzed sunflower oil epoxidation studied by 1H NMR. Eur J Lipid Sci Technol 109(12):1186–1193.  https://doi.org/10.1002/ejlt.200700114 CrossRefGoogle Scholar
  31. 31.
    Chrétien G, Hatat D (1990) Initiation aux plastiques et aux composites, Paris, GIE des producteurs de matières plastiques,‎ 174 p. ISBN 2-85206-594-0Google Scholar
  32. 32.
    Narendar R, Priya Dasan K (2014) Chemical treatments of coir pith: morphology, chemical composition, thermal and water retention behavior. Compos B 56:770–779.  https://doi.org/10.1016/j.compositesb.2013.09.028 CrossRefGoogle Scholar
  33. 33.
    Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci 119(6):3696–3707.  https://doi.org/10.1002/app.31335 CrossRefGoogle Scholar
  34. 34.
    Mechakra H, Nour A, Lecheb S, Chellil A (2015) Mechanical characterizations of composite material with short Alfa fibers reinforcement. Compos Struct 124(0):152–162.  https://doi.org/10.1016/j.compstruct.2015.01.010 CrossRefGoogle Scholar
  35. 35.
    Suzuki M, Wilkie CA (1995) The thermal degradation of acrylonitri-lebutadiene-styrene terploymer grafted with methacrylic acid. Polym Degrad Stab 47(2):223–228.  https://doi.org/10.1016/0141-3910(94)00113-M CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sihem Kadem
    • 1
  • Ratiba Irinislimane
    • 1
    • 2
  • Naima Belhaneche-Bensemra
    • 1
  1. 1.Laboratoire des Sciences et Techniques de l’EnvironnementEcole Nationale PolytechniqueEl-Harrach, AlgerAlgeria
  2. 2.Faculté de Sciences, Siège (Ex-INIL)Université M’Hamed BougaraBoumerdèsAlgeria

Personalised recommendations