Skip to main content
Log in

Statistical Optimization of Polyhydroxybutyrate Production by Bacillus Pumilus H9 Using Cow Dung as a Cheap Carbon Source by Response Surface Methodology

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A gram positive bacterium (designated strain H9) found to be a potential polyhydroxybutyrate (biodegradable polymer) producer was isolated from the soil samples of a stress prone environment (municipal waste areas). This bacterium was identified as Bacillus pumilus H9 from its morphological, physiological and 16S rRNA gene sequence analysis. A four-factor central composite rotary design was employed to optimize the medium and to find out the interactive effects of four variables, viz. concentrations of cow dung, sucrose, peptone and pH on PHB production. Using response surface methodology, a second-order polynomial equation was obtained by multiple regression analysis and a yield of 2.47 g/L of PHB dry weight was achieved from the optimized medium at pH 7. Here, we report cow dung as a cheap carbon source for the production of PHB. Further, phbA, phbB and phbC genes were amplified by polymerase chain reaction which confirms the bacterium to be able to produce polyhydroxybutyrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Process Biochem 44:509–515

    Article  CAS  Google Scholar 

  2. Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) J Biosci Bioeng 107(3):240–245

    Article  CAS  PubMed  Google Scholar 

  3. Li R, Zhang H, Qi Q (2007) Bioresour Technol 98(12):2313–2320

    Article  CAS  PubMed  Google Scholar 

  4. Gasser I, Muller H, Berg G (2009) FEMS Microbiol Ecol 70:142–150

    Article  CAS  PubMed  Google Scholar 

  5. Kadouri D, Burdman S, Jurkevitch E, Okon Y (2002) Appl Environ Microbiol 68:2943–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi J, Lee SY (1997) Bioprocess Eng 17:335–342

    Article  CAS  Google Scholar 

  7. Laleye SA, Tedela PO, Adesua B, Famurewa O (2007) Res J Microbiol 2(6):545–549

    Article  Google Scholar 

  8. Kiyasudeen SK, Ibrahim MHB, Ismail SA (2015) Am-Euras J Agric Environ Sci 15(8):1700–1709

    CAS  Google Scholar 

  9. Onwudike SU (2010) Asian J Agric Res 4(3):148–154

    Article  CAS  Google Scholar 

  10. Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000) Biochem Eng J 6:153–162

    Article  CAS  PubMed  Google Scholar 

  11. Pal A, Ramana KV, Bawa AS (2010) J Food Sci Technol 47:258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen GQ, Wu Q (2005) Biomaterials 26:6565–6578

    Article  CAS  PubMed  Google Scholar 

  13. Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Darani KK (2009) Bioresour Technol 100:2436–2443

    Article  CAS  PubMed  Google Scholar 

  14. Mu W, Chen C, Li X, Zhang T, Jiang B (2009) Bioresour Technol 100:1366–1370

    Article  CAS  PubMed  Google Scholar 

  15. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williamsons and Wilkins, Baltimore

    Google Scholar 

  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rawte T, Mavinkurve S (2002) Indian J Exp Biol 40:924–929

    CAS  PubMed  Google Scholar 

  18. Omidvar V, Akmar ASN, Marziah M, Maheran AA (2008) Plant Cell Rep 27:1451–1459

    Article  CAS  PubMed  Google Scholar 

  19. Palleroni NJ, Kreig NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  20. Wang Y, Ruan L, Chua H, Yu PHF (2006) World J Microbiol Biotechnol 22(6):559–563

    Article  CAS  Google Scholar 

  21. Reddy SV, Thirumala M, Mahmood SK (2009) World J Microbiol Biotechnol 25:391–397

    Article  CAS  Google Scholar 

  22. Pandian SRK, Deepak V, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S (2010) Bioresour Technol 101(2):705–711

    Article  CAS  PubMed  Google Scholar 

  23. Sangkharak K, Prasertsan P (2012) J Gen Appl Microbiol 58:173–182

    Article  CAS  PubMed  Google Scholar 

  24. Soam A, Singh AK, Singh R, Shahi SK (2012) Curr Discov 1(1):27–32

    Google Scholar 

  25. Khiyami MA, Al-Fadual SM, Bahklia AH (2011) J Med Plants Res 5(14):3312–3320

    CAS  Google Scholar 

  26. Masood F, Hasan F, Ahmed S, Hameed A (2012) Ann Microbiol 62(4):1377–1384

    Article  CAS  Google Scholar 

  27. Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I (2007) J Biotechnol 127(3):475–487

    Article  CAS  PubMed  Google Scholar 

  28. Lee SY, Middelberg APJ, Lee YK (1997) Biotechnol Lett 19(10):1033–1035

    Article  CAS  Google Scholar 

  29. Khardenavis AA, Kumar MS, Mudliar SN, Chakrabarti T (2007) Bioresour Technol 98(18):3579–3584

    Article  CAS  PubMed  Google Scholar 

  30. Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Polym Degrad Stab 93(1):17–23

    Article  CAS  Google Scholar 

  31. Kahar P, Tsuge T, Taguchi K, Doi Y (2004) Polym Degrad Stab 83(1):79–86

    Article  CAS  Google Scholar 

  32. Thakor N, Trivedi U, Patel KC (2005) Bioresour Technol 96(17):1843–1850

    Article  CAS  PubMed  Google Scholar 

  33. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) J Appl Microbiol 106:2017–2023

    Article  CAS  PubMed  Google Scholar 

  34. Vijayaraghavan P, Vijayan A, Arun A, Jenisha JK, Vincent SGP (2012) SpringerPlus 1:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao JLUM, Satyanarayana T (2007) Bioresour Technol 98(2):345–352

    Article  CAS  Google Scholar 

  36. Xiong YH, Liu JZ, Song HY, Ji LN (2004) Biochem Eng J 21(1):27–32

    Article  CAS  Google Scholar 

  37. Deepak V, Kalishwaralal K, Ramkumarpandian S, Babu SV, Senthilkumar SR, Sangiliyandi G (2008) Bioresour Technol 99(17):8170–8174

    Article  CAS  PubMed  Google Scholar 

  38. Haaland PD (1989) Statistical problem solving In: Haaland PD (ed) Experimental design in biotechnology. Marcel Dekker Inc, New York, pp 1–18

    Google Scholar 

  39. Berekaa MM (2012) Life Sci J 9(4):518–529

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Biotechnology, India for providing instruments to Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India which were used in this work. The authors would also like to acknowledge Pintubala Kshetri, ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal, India for her help in analysis of the Design Expert 6 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Behari Mazumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandani Devi, N., Mazumder, P.B. & Bhattacharjee, A. Statistical Optimization of Polyhydroxybutyrate Production by Bacillus Pumilus H9 Using Cow Dung as a Cheap Carbon Source by Response Surface Methodology. J Polym Environ 26, 3159–3167 (2018). https://doi.org/10.1007/s10924-018-1194-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1194-7

Keywords

Navigation