Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 3040–3050 | Cite as

Urea Formaldehyde and Cellulose Nanocrystals Adhesive: Studies Applied to Sugarcane Bagasse Particleboards

  • Ricardo Gabriel de Almeida MesquitaEmail author
  • Lourival Marin Mendes
  • Anand Ramesh Sanadi
  • Alfredo Rodrigues de Sena Neto
  • Pedro Ivo Cunha Claro
  • Ana Carolina Corrêa
  • José Manoel Marconcini
Original Paper


The aim of this research was to investigate the behavior of urea formaldehyde (UF) adhesive based particleboards using sugarcane bagasse (SCB), with and without the addition of cellulose nanocrystals (NCC). In the first step of this research study, the interaction between UF and the NCC was evaluated. The NCC were dispersed in the UF, in different proportions (0, 0.5, 1, 2, 3 and 5%). Subsequent to this, the mixtures were dried, milled, and put in molds, to produce flexural specimens. The second step involved evaluation of the interaction between the NCC, UF, and SCB. After sonication, the NCC and UF were applied on the SCB particles to produce particleboards. They were evaluated according to the modulus of elasticity and rupture, water absorption (WA), and thickness swelling. The viscosity of the mixture of NCC and UF increased according to the NCC increase load. At 5% of NCC load, the viscosity increased greatly, which prevented adhesive dispersion in the particleboard. The thermogravimetric analysis of UF showed that better conditions of processing were at 160 °C for 8 min, so these parameters were used to produce the specimens. SCB is a promising raw material for particleboard, and its potential to produce SCB particleboards with relatively good performance was demonstrated. For the particleboards specimens, the best performance was observed with 1% of NCC. Particleboards did not show improvement compared with UF specimens, probably because bond links were not sufficient. Addition of NCC in UF increased the liquid suspension viscosity, and the specimens showed a better mechanical performance.


Natural fiber Amino resin Chipboards Thermosetting Nanotechnology 



The authors are grateful for the support of Coordenação de Aperfeiçoamento de pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), RELIGAR, Embrapa Instrumentação, Federal University of Lavras (UFLA), and University of Copenhagen.


  1. 1.
    Iwakiri S (2005) Painéis de madeira reconstituída. FUPEF, CuritibaGoogle Scholar
  2. 2.
    Kelly MW (1977) Critical literature review of relationships between processing parameters and physical properties of particleboard. Forest Products Laboratory, MadisonGoogle Scholar
  3. 3.
    Maloney T (1996) The family of wood composite materials. Forest Prod J 46(2):19–26Google Scholar
  4. 4.
    de Barros Filho RM, Mendes LM, Novack KM, Aprelini LO, Botaro VR (2011) Hybrid chipboard panels based on sugarcane bagasse, urea formaldehyde and melamine formaldehyde resin. Ind Crop Prod 33(2):369–373CrossRefGoogle Scholar
  5. 5.
    Carvajal O, Valdés J, Puig J (1996) Bagasse particleboards for building purpose. Holz Roh Werkst 54(1):61–63CrossRefGoogle Scholar
  6. 6.
    da Silva César AA, Bufalino L, de Macedo LB, de Almeida Mesquita RG, de Paula T, Protásio LM, Mendes (2014) Use of coffee plant stem in the production of conventional particleboards. Key Eng Mat 600:703–708CrossRefGoogle Scholar
  7. 7.
    Kwon JH, Ayrilmis N, Han TH (2013) Enhancement of flexural properties and dimensional stability of rice husk particleboard using wood strands in face layers. Compos Part B 44(1):728–732CrossRefGoogle Scholar
  8. 8.
    Widyorini R, Xu J, Umemura K, Kawai S (2005) Manufacture and properties of binderless particleboard from bagasse I: effects of raw material type, storage methods, and manufacturing process. J Wood Sci 51(6):648–654CrossRefGoogle Scholar
  9. 9.
    Khedari J, Nankongnab N, Hirunlabh J, Teekasap S (2004) New low-cost insulation particleboards from mixture of durian peel and coconut coir. Build Environ 39(1):59–65CrossRefGoogle Scholar
  10. 10.
    dos Santos MFN, Rosane Ap B, Bezerra GBS, Varum HS (2014) Comparative study of the life cycle assessment of particleboards made of residues from sugarcane bagasse (Saccharum spp.) and pine wood shavings (Pinus elliottii). J Clean Prod 64:345–355CrossRefGoogle Scholar
  11. 11.
    Tabarsa T, Ashori A, Gholamzadeh M (2011) Evaluation of surface roughness and mechanical properties of particleboard panels made from bagasse. Compos Part B 42(5):1330–1335CrossRefGoogle Scholar
  12. 12.
    Yang H-S, Kim D-J, Kim H-J (2003) Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresour Technol 86(2):117–121CrossRefPubMedGoogle Scholar
  13. 13.
    Doost-hoseini K, Taghiyari HR, Elyasi A (2014) Correlation between sound absorption coefficients with physical and mechanical properties of insulation boards made from sugar cane bagasse. Compos Part B 58:10–15CrossRefGoogle Scholar
  14. 14.
    Mendes RF, Mendes LM, Júnior JBG, .d. Santos RC, Bufalino L (2009) The adhesive effect on the properties of particleboards made from sugar cane bagasse generated in the distiller. Rev de Ciênc Agrárias 32(2):209–218Google Scholar
  15. 15.
    Battistelle RAG, Marcilio C, Lahr FAR (2009) Emprego do bagaço da cana-de-açúcar (Saccharum officinarum) e das folhas caulinares do bambu da espécie dendrocalamus giganteus na produção de chapas de partículas. Rev Minerva 3:297–305Google Scholar
  16. 16.
    Fiorelli J, Lahar FAR, do Nascimento MF, Junior HS, Rossignolo JA (2011) Painéis de partículas à base de bagaço de cana e resina de mamona–produção e propriedades. Acta Sci Technol 33(4):401–406CrossRefGoogle Scholar
  17. 17.
    DEA 23/13. Boletim de conjuntura energética. Bagaço de cana. Rio de Janeiro: Ministério de Minas e Energia, 2013. 72 p. Nota técnicaGoogle Scholar
  18. 18.
    Li X, Cai Z, Winandy JE, Basta AH (2011) Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards. Ind Crop Prod 33(3):665–669CrossRefGoogle Scholar
  19. 19.
    Ashori A, Nourbakhsh A, Tabrizi AK (2014) Thermoplastic hybrid composites using bagasse, corn stalk and E-glass fibers: fabrication and characterization. Polym Plastics Technol Eng 53(1):1–8CrossRefGoogle Scholar
  20. 20.
    Guimarães Júnior M, Novack KM, Botaro VR, Protásio TdP (2012) Caracterização de polpas de bambu modificadas quimicamente visando melhorias em suas interações interfaciais para aplicações em compósitos. Rev Iberoam polímeros 13:89–102Google Scholar
  21. 21.
    Jonoobi M, Grami M, Ashori A, Ebrahimi G (2016) Effect of ozone pretreatment on the physical and mechanical properties of particleboard panels made from bagasse. Measurement 94:451–455CrossRefGoogle Scholar
  22. 22.
    Mesquita RGdA, César AAdS, Mendes RF, Mendes LM, Marconcini JM, Glenn G, Tonoli GHD (2016) Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse. J Polym Environ 25: 1–12Google Scholar
  23. 23.
    Atta-Obeng E, Via BK, Fasina O (2012) Effect of microcrystalline cellulose, species, and particle size on mechanical and physical properties of particleboards. Wood Fiber Sci 44:1–9Google Scholar
  24. 24.
    Veigel S, Rathke J, Weigl M, Gindl-Altmutter W (2012) Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive. J Nanomater 2012:1–8CrossRefGoogle Scholar
  25. 25.
    Zhang H, Zhang J, Song S, Wu G, Pu J (2011) Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive. BioResources 6(4):4430–4438Google Scholar
  26. 26.
    Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos KM, Chrissafis K (2008) Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J Therm Anal Calorimet 92(1):29–33CrossRefGoogle Scholar
  27. 27.
    Mahrdt E, Pinkl S, Schmidberger C, van Herwijnen HW, Veigel S, Gindl-Altmutter W (2016) Effect of addition of microfibrillated cellulose to urea-formaldehyde on selected adhesive characteristics and distribution in particle board. Cellulose 23:571–580CrossRefGoogle Scholar
  28. 28.
    ASTM (2002) Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM D790-00, West ConshohockenGoogle Scholar
  29. 29.
    ASTM (2006) Standard methods of evaluating properties of wood-base fiber and particles materials, ASTM D-1037-06a, PhilladelphiaGoogle Scholar
  30. 30.
    EN-317 (1993) Particleboards and fibreboards—determination of swelling in thickness after immersion in water, EN 317Google Scholar
  31. 31.
    Dunky M (1998) Urea–formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18(2):95–107CrossRefGoogle Scholar
  32. 32.
    Frihart CR (2005) Wood adhesion and adhesives. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 215–278Google Scholar
  33. 33.
    Siimer K, Kaljuvee T, Christjanson P (2003) Thermal behaviour of urea-formaldehyde resins during curing. J Therm Anal Calorim 72(2):607–617CrossRefGoogle Scholar
  34. 34.
    Mlađan P, Jaroslava BS, Mirjana J, Joszef M, Milanka ĐM, Jelena P, Ivan R (2011) Curing kinetics of two commercial urea-formaldehyde adhesives studied by isoconversional method. Hemijska industrija 65(6):717–726CrossRefGoogle Scholar
  35. 35.
    Pratt TJ, Johns WE, Rammon RM, Plagemann WL (1985) A novel concept on the structure of cured urea-formaldehyde resin. J Adhes 17(4):275–295CrossRefGoogle Scholar
  36. 36.
    Dunker AK, John WE, Rammon R, Farmer B, Johns SJ (1986) Slightly bizarre protein chemistry: urea-formaldehyde resin from a biochemical perspective. J Adhes 19(2):153–176CrossRefGoogle Scholar
  37. 37.
    Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781–1788CrossRefGoogle Scholar
  38. 38.
    Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20(1):388–393CrossRefGoogle Scholar
  39. 39.
    Poletto M, Zattera AJ, Forte MM, Santana RM (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153CrossRefPubMedGoogle Scholar
  40. 40.
    Dunky M (2004) Adhesives based on formaldehyde condensation resins, Macromolecular Symposia. Wiley Online Library, pp 417–430Google Scholar
  41. 41.
    Veigel S, Müller U, Keckes J, Obersriebnig M, Gindl-Altmutter W (2011) Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds. Cellulose 18(5):1227–1237CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Commercial Standard, CS 236–66: mat formed wood particleboard (1968)Google Scholar
  43. 43.
    Carvalho AG, Mendes RF, Oliveira SL, Mendes LM (2015) Effect of post-production heat treatment on particleboard from sugarcane bagasse. Mat Res 18(1):78–84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ricardo Gabriel de Almeida Mesquita
    • 1
    Email author
  • Lourival Marin Mendes
    • 2
  • Anand Ramesh Sanadi
    • 3
  • Alfredo Rodrigues de Sena Neto
    • 4
  • Pedro Ivo Cunha Claro
    • 5
  • Ana Carolina Corrêa
    • 6
  • José Manoel Marconcini
    • 6
  1. 1.Department of Forestry SciencesRural Federal University of the Amazonia (UFRA)Capitão PoçoBrazil
  2. 2.Department of Forestry SciencesFederal University of LavrasLavrasBrazil
  3. 3.Department of Geosciences and Natural Resource ManagementUniversity of Copenhagen Faculty of ScienceFrederiksberg CDenmark
  4. 4.Department of EngineeringFederal University of LavrasLavrasBrazil
  5. 5.Federal University of São CarlosSão CarlosBrazil
  6. 6.LNNA, Brazilian Agricultural Research Corporation (EMBRAPA Instrumentação)São CarlosBrazil

Personalised recommendations