Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2973–2982 | Cite as

Mechanical and Thermal Oxidation Behavior of Poly(Lactic Acid)/Halloysite Nanotube Nanocomposites Containing N,N′-Ethylenebis(Stearamide) and SEBS-g-MA

  • W. S. Chow
  • W. L. Tham
  • B. T. Poh
  • Z. A. Mohd Ishak
Original Paper


Poly(lactic acid) (PLA)/halloysite nanotube (HNT) nanocomposites were prepared using melt compounding followed by compression molding. Maleic anhydride grafted styrene–ethylene/butylene–styrene copolymer (SEBS-g-MA) and N,N′-ethylenebis(stearamide) (EBS) were used to improve the impact properties of PLA nanocomposites. The properties of PLA/HNT nanocomposites were characterized by tensile and impact tests, Fourier transform infrared spectroscopy, thermal analysis (DSC and TGA), and morphological analysis (FESEM and TEM). In addition, the oxidation onset temperature (OOT) was determined using DSC. The PLA/HNT6/EBS5 nanocomposites gives higher impact strength improvement (98%) compared to that of PLA/HNT6/SEBS-g-MA5 (77%). Also, the PLA/HNT6/EBS5 exhibited higher OOT compared to that of PLA/HNT6/SEBS-g-MA5 nanocomposites.


Poly(lactic acid) Halloysite Maleic anhydride grafted styrene–ethylene/butylene–styrene copolymer N,N′-ethylenebis(stearamide) Oxidation onset temperature 



This study was funded by Universiti Sains Malaysia Research University Grant (Grant Nos. 814070; 814199) and Ministry of Higher Education Malaysia MyPHD Scholarship Programme.


  1. 1.
    Chow WS, Mohd Ishak ZA (2015) Polyamide blend-based nanocomposites: a review. Express Polym Lett 9:211–232CrossRefGoogle Scholar
  2. 2.
    Liu X, Wu Q, Berglund LA (2002) Polymorphism in polyamide 66/clay nanocomposites. Polymer 43:4967–4972CrossRefGoogle Scholar
  3. 3.
    Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42:807–813CrossRefGoogle Scholar
  4. 4.
    Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem Mater 15:1456–1465CrossRefGoogle Scholar
  5. 5.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602CrossRefGoogle Scholar
  6. 6.
    Chun KS, Husseinsyah S (2014) Polylactic acid/corn cob eco-composites: effect of new organic coupling agent. J Thermoplast Compos Mater 27:1667–1678CrossRefGoogle Scholar
  7. 7.
    Li Y, Han C, Bian J, Han L, Dong L, Gao G (2012) Rheology and biodegradation of polylactide/silica nanocomposites. Polym Compos 33:1719–1727CrossRefGoogle Scholar
  8. 8.
    Cai YM, Lv JG, Feng JM (2013) Spectral characterization of four kinds of biodegradable plastics: poly(lactic acid), poly(butylenes adipate-co-terephthalate), poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylenes succinate) with FTIR and Raman Spectroscopy. J Polym Environ 21:108–114CrossRefGoogle Scholar
  9. 9.
    Handge UA, Hedicke-Höchstötter K, Altstädt V (2010) Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer 51:2690–2699CrossRefGoogle Scholar
  10. 10.
    Dujkova Z, Merinska D, Slouf M (2013) Fire retardation of polystyrene/clay nanocomposites: initial study on synergy effect. J Thermoplast Compos Mater 26:1278–1286CrossRefGoogle Scholar
  11. 11.
    Ismail H, Khoo WS, Ariffin A (2013) Effects of halloysite nanotubes and kaolin loading on the tensile, swelling, and oxidative degradation properties of poly(vinyl alcohol)/chitosan blends. J Vinyl Addit Technol 19:55–64CrossRefGoogle Scholar
  12. 12.
    Lecouvet B, Bourbigot S, Sclavons M, Bailly C (2012) Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polym Degrad Stab 97:1745–1754CrossRefGoogle Scholar
  13. 13.
    Oburoğlu N, Ercan N, Durmus A, Kaşgöz A (2012) Effects of halloysite nanotube on the mechanical properties and nonisothermal crystallization kinetics of poly(butylene terephthalate)(PBT). J Macromol Sci B Phys 51:860–879CrossRefGoogle Scholar
  14. 14.
    Rasal RM, Hirt DE (2008) Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. J Biomed Mater Res A 88A:1079–1086CrossRefGoogle Scholar
  15. 15.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  16. 16.
    Noda I, Satkowsi MM, Dowrey AE, Marcott C (2004) Polymer alloys of nodax copolymers and poly(lactic acid). Macromol Biosci 4:269–275CrossRefPubMedGoogle Scholar
  17. 17.
    Wang YL, Hu X, Li H, Ji X, Li ZM (2010) Polyamide-6/poly(lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer. Polym-Plast Technol Eng 49:1241–1246CrossRefGoogle Scholar
  18. 18.
    Zeng JB, Li YD, Zhu QY, Yang KK, Wang XL, Wang YZ (2009) A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylenes succinate) blocks. Polymer 50:1178–1186CrossRefGoogle Scholar
  19. 19.
    Tjong S, Xu S (2001) Ternary polymer composites: PA6,6/maleated SEBS/glass beads. J Appl Polym Sci 81:3231–3237CrossRefGoogle Scholar
  20. 20.
    Švab I, Musil V, Šmit I, Makarovič M (2007) Mechanical properties of wollastonite-reinforced polypropylene composites modified with SEBS and SEBS-g-MA elastomers. Polym Eng Sci 47:1873–1880CrossRefGoogle Scholar
  21. 21.
    Liu SP, Ying JR, Zhou XP, Xie XL, Mai YM (2009) Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MAH. Compos Sci Technol 69:1873–1879CrossRefGoogle Scholar
  22. 22.
    Denac M, Musil V, Šmit I (2005) Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties. Compos A Appl Sci Manuf 36:1282–1290CrossRefGoogle Scholar
  23. 23.
    Kusmono, Mohd Ishak ZA, Chow WS, Takeichi T, Rochmadi (2008) Compatibilizing effect of SEBS-g-MA on the mechanical properties of different types of OMMT filled polyamide 6/polypropylene nanocomposites. Compos A Appl Sci Manuf 39:1802–1814CrossRefGoogle Scholar
  24. 24.
    Tjong SC, Xu SA, Mai YM (2003) Tensile deformation mechanism of polyamide 6, 6/SEBS-g-MA blend and its hybrid composites reinforced with short glass fibers. J Mater Sci 38:207–215 (2003)CrossRefGoogle Scholar
  25. 25.
    Yemele MCN, Koubaa A, Cloutier A, Soulounganga P, Wolcott M (2010) Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Compos A Appl Sci Manuf 41:131–137CrossRefGoogle Scholar
  26. 26.
    Li T, Wolcott M (2006) Rheology of wood plastics melt, part 2: effects of lubricating systems in HDPE/maple composites. Polym Eng Sci 46:464–473CrossRefGoogle Scholar
  27. 27.
    Kiatkamjornwong S, Thakeow P, Sonsuk M (2001) Chemical modification of cassava starch for degradable polyethylene sheets. Polym Degrad Stab 73:363–375CrossRefGoogle Scholar
  28. 28.
    Yang Z, Zhou C, Yang H, Cai T, Cai J, Li HB, Zhou D, Chen BF, Li AM, Cheng RS (2012) Improvement of the compatibilization of high-impact polystyrene/magnesium hydroxide composites with partially sulfonated polystyrene as macromolecular compatibilizers. Ind Eng Chem Res 5:9204–9212CrossRefGoogle Scholar
  29. 29.
    Yu ZF, Yang YY, Zhang LL, Ding YC, Chen XM, Xu KT (2012) Study of short glass fiber-reinforced poly(3-hydroxybutyrate-co-4-hydroxybutyrate) composites. J Appl Polym Sci 126:822–829CrossRefGoogle Scholar
  30. 30.
    Ndazi BS, Karlsson S (2011) Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym Lett 5:119–131CrossRefGoogle Scholar
  31. 31.
    Mohapatra AK, Mohanty S, Nayak SK (2012) Poly(lactic acid) and layered silicate nanocomposites prepared by melt mixing: thermomechanical and morphological properties. Polym Compos 33:2095–2104CrossRefGoogle Scholar
  32. 32.
    Chow WS, Lim SR (2013) Effects of N,N′-ethylenebis (stearamide) on the properties of poly (ethylene terephthalate)/organo-montmorillonite nanocomposite. Polym Plast Technol Eng 52:626–633CrossRefGoogle Scholar
  33. 33.
    Tjong SC, Bao SP (2007) Fracture toughness of high density polyethylene/SEBS-g-MA/montmorillonite nanocomposites. Compos Sci Tech 67:314–323CrossRefGoogle Scholar
  34. 34.
    Kusmono, Mohd Ishak ZA, Chow WS, Takeichi T (2008) Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites. Eur Polym J 44:1023–1039CrossRefGoogle Scholar
  35. 35.
    Lin Y, Chen H, Chan CM, Wu J (2010) The toughening mechanism of polypropylene/calcium carbonate nanocomposites. Polymer 2010 51:3277–3284CrossRefGoogle Scholar
  36. 36.
    Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40:2347–2365CrossRefGoogle Scholar
  37. 37.
    Alhuthali A, Low IM (2013) Mechanical and fracture properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Appl Polym Sci 130:1716–1725CrossRefGoogle Scholar
  38. 38.
    Cerrutia P, Carfagnaa C, Rychly J, Matisova-Rychla L (2003) Chemiluminescence from oxidation of polyamide 6,6. I. The oxidation of pure polyamide. Polym Degrad Stab 82:477–485CrossRefGoogle Scholar
  39. 39.
    Tham WL, Poh BT, Mohd Ishak ZA, Chow WS (2014) Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. J Therm Anal Calorim 118:1639–1647CrossRefGoogle Scholar
  40. 40.
    Tham WL, Poh BT, Mohd Ishak ZA, Chow WS (2016) Epoxidized natural rubber toughened poly(lactic acid)/halloysite nanocomposites with high activation energy of water diffusion. J Appl Polym Sci 42850Google Scholar
  41. 41.
    Lim SR, Chow WS (2012) Impact, thermal, and morphological properties of functionalized rubber toughened-poly (ethylene terephthalate) nanocomposites. J Appl Polym Sci 123:3173–3181CrossRefGoogle Scholar
  42. 42.
    Di Y, Iannace S, Maio ED, Nicolais L (2005) Poly (lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J Polym Sci B Polym Phys 43:689–698CrossRefGoogle Scholar
  43. 43.
    Bertini F, Canetti M, Audisio G, Costa G, Falqui L (2006) Characterization and thermal degradation of polypropylene/montmorillonite nanocomposites. Polym Degrad Stab 91:600–605CrossRefGoogle Scholar
  44. 44.
    Khumalo VM, Karger-Kocsis J, Thomann R (2010) Polyethylene/synthetic boehmite alumina nanocomposites: structure, thermal and rheological properties. Express Polym Lett 4:264–274CrossRefGoogle Scholar
  45. 45.
    Dominkovics Z, Hári J, Fekete E, Pukánszky B (2011) Thermo-oxidative stability of polypropylene/layered silicate nanocomposites. Polym Degrad Stab 96:581–587CrossRefGoogle Scholar
  46. 46.
    Tidjani A, Wald O, Pohl MM, Hentschel MP, Schartel B (2003) Polypropylene–graft–maleic anhydride-nanocomposites: I. Characterization and thermal stability of nanocomposites produced under nitrogen and in air. Polym Degrad Stab 82:133–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaPenangMalaysia
  2. 2.School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations