Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2934–2944 | Cite as

The Effect of Carboxyl Group Content on Water Uptake Capacity and Tensile Properties of Functionalized Soy Protein-Based Superabsorbent Plastics

  • A. A. Cuadri
  • A. Romero
  • C. Bengoechea
  • A. Guerrero
Original Paper

Abstract

This manuscript studies the relation between macroscopic properties of the soy protein isolate (SPI)-based superabsorbent polymers (SAP) (e.g., water uptake capacity and tensile properties) and the extent of chemical modification conducted on the protein. The increase in the carboxyl group content, obtained from electrometric titrations, for acylated systems compared to native SPI brings with it an improvement in the protein hydrophilic character, as revealed by the determination of the water imbibing capacity. SEM images show that larger porous regions were developed in the acylated plastics. As for their mechanical properties, static tensile measurements indicated that acylated plastics with greater water uptake values display higher extensibility, compared to the reference sample. These natural-based SAP materials could be appropriate for applications in which maintaining the dimensional stability during service is not crucial (e.g. in agriculture and horticulture).

Keywords

Superabsorbent plastics Water uptake capacity Static tensile properties Protein functionalization 

Notes

Acknowledgements

This work is part of a research project (Ref. CTQ2015-71164-P) sponsored by MINECO/FEDER (EU). The authors gratefully acknowledge their financial support. The authors also acknowledge to CIITUS (Universidad de Sevilla) for providing full access and assistance to the SEM of the Microscopy Service.

References

  1. 1.
    Feng D, Bai B, Wang H, Suo Y (2017) Novel fabrication of PAA/PVA/Yeast superabsorbent with interpenetrating polymer network for pH-dependent selective adsorption of dyes. J Polym Environ.  https://doi.org/10.1007/s10924-017-0972-y Google Scholar
  2. 2.
    Shi W, Dumont MJ, Ly EB (2017) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180CrossRefGoogle Scholar
  3. 3.
    Teli MD, Mallick A (2017) Utilization of waste sorghum grain for producing superabsorbent for personal care products. J Polym Environ.  https://doi.org/10.1007/s10924-017-1044-z Google Scholar
  4. 4.
    El-Naggar AWM, Alla SGA, Said HM (2006) Temperature and pH responsive behaviours of CMC/AAc hydrogels prepared by electron beam irradiation. Mater Chem Phys 95:158–163CrossRefGoogle Scholar
  5. 5.
    Wang X, Hou H, Li Y, Wang Y, Hao C, Ge C (2016) A novel semi-IPN hydrogel: Preparation, swelling properties and adsorption studies of Co (II). J Ind Eng Chem 41:82–90CrossRefGoogle Scholar
  6. 6.
    Kosemund K, Schlatter H, Ochsenhirt JL, Krause EL, Marsman DS, Erasala GN (2009) Safety evaluation of superabsorbent baby diapers. Regul Toxicol Pharm 53:81–89CrossRefGoogle Scholar
  7. 7.
    Jamshidi A, Ahmad Khan Beigi F, Kabiri K, Zohuriann-Mehr MJ (2005) Optimized HPLC determination of residual monomer in hygienic SAP hydrogels. Polym Test 24:825–828CrossRefGoogle Scholar
  8. 8.
    Setoyama M, Yamamoto K, Kadokawa J (2014) Preparation of cellulose/xanthan gum composite films and hydrogels using ionic liquid. J Polym Environ 22:298–303CrossRefGoogle Scholar
  9. 9.
    Zou W, Liu X, Yu L, Qioa D, Chen L, Liu H, Zhang N (2013) Synthesis and characterization of biodegradable starch-polyacrylamide graft copolymers using starches with different microstructures. J Polym Environ 21:359–365CrossRefGoogle Scholar
  10. 10.
    Chen J, Liu M, Chen S (2009) Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Mater Chem Phys 115:339–346CrossRefGoogle Scholar
  11. 11.
    Sharma J, Kaith BS, Bhatti MS (2017) Fabrication of biodegradable superabsorbent using RSM design for controlled release of KNO3. J Polym Environ.  https://doi.org/10.1007/s10924-017-0959-8 Google Scholar
  12. 12.
    Yu Y, Liu L, Kong Y, Zhang E, Liu Y (2011) Synthesis and properties of N-maleyl chitosan-cross-linked poly(acrylic acid-co-acrylamide) superabsorbents. J Polym Environ 19:929–934CrossRefGoogle Scholar
  13. 13.
    Bhattacharyya R. Ray SK (2015) Adsorption of industrial dyes by semi-IPN hydrogels of Acrylic copolymers and sodium alginate. J Ind Eng Chem 22:92–102CrossRefGoogle Scholar
  14. 14.
    Chandrika KSVP., Singh A, Rathore A, Kumar A (2016) Novel cross linked guar gum-g-poly(acrylate) porous superabsorbent hydrogels: characterization and swelling behaviour in different environments. Carbohydr Polym 149:175–185CrossRefGoogle Scholar
  15. 15.
    Choi D, Heo J, Park JH, Jo Y, Jeong H, Chang M, Choi J, Hong J (2016) Nano-film coatings onto collagen hydrogels with desired drug release. J Ind Eng Chem 36:326–333CrossRefGoogle Scholar
  16. 16.
    López-Castejón ML, Bengoechea C, García-Morales M, Martínez I (2015) Effect of plasticizer and storage conditions on thermomechanical properties of albumen/tragacanth based bioplastics. Food Bioprod Process 95:264–271CrossRefGoogle Scholar
  17. 17.
    Hwang DC, Damodaran S (1996) Chemical modification strategies for synthesis of protein-based hydrogel. J Agric Food Chem 44:751–758CrossRefGoogle Scholar
  18. 18.
    Tian HF, Wu WQ, Guo GP, Gaolun B, Jia QQ, Xiang AM (2012) Microstructure and properties of glycerol plasticized soy protein plastics containing castor oil. J Food Eng 109:496–500CrossRefGoogle Scholar
  19. 19.
    Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016) Protein/glycerol blends and injection-molded bioplastic matrices: soybean versus egg albumen. J Appl Polym Sci.  https://doi.org/10.1002/app.42980 Google Scholar
  20. 20.
    Félix M, Martín-Alfonso JE, Romero A, Guerrero A (2014) Development of albumen/soy biobased plastic materials processed by injection molding. J Food Eng 125:7–16CrossRefGoogle Scholar
  21. 21.
    Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016) Thermomechanical properties and water uptake capacity of soy protein-based bioplastics processed by injection molding. J Appl Polym Sci.  https://doi.org/10.1002/app.43524 Google Scholar
  22. 22.
    Hwang DC, Damodaran S (1996) Equilibrium swelling properties of a novel ethylenediaminetetraacetic dianhydride (EDTAD)-modified soy protein hydrogel. J Appl Polym Sci 62:1285–1293CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Ma CY, Yuen SN, Phillips DL (2004) Study of succinylated food proteins by Raman spectroscopy. J Agric Food Chem 52:1815–1823CrossRefGoogle Scholar
  24. 24.
    Yoshimura T, Uchikoshi I, Yoshiura Y, Fujioka R (2005) Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride. Carbohydr Polym 61:322–326CrossRefGoogle Scholar
  25. 25.
    Yoshimura T, Yoshimura R, Seki C, Fujioka R (2006) Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride. Carbohydr Polym 64:345–349CrossRefGoogle Scholar
  26. 26.
    Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99:3251–3256CrossRefGoogle Scholar
  27. 27.
    Cuadri AA, Bengoechea C, Romero A, Guerrero A (2016) A natural-based polymeric hydrogel based on functionalized soy protein. Eur Polym J 85:164–174CrossRefGoogle Scholar
  28. 28.
    Cuadri AA, Romero A, Bengoechea C, Guerrero A (2017) Natural superabsorbent plastic materials based on a functionalized soy protein. Polym Test 58:126–134CrossRefGoogle Scholar
  29. 29.
    Hwang DC, Damodaran S (1997) Metal-chelating properties and biodegradability of an ethylenediaminetatraacetic acid dianhydride modified soy protein hydrogel. J Appl Polym Sci 64:891–901CrossRefGoogle Scholar
  30. 30.
    Wagner JR, Sorgentini DA, Anon MC (1996) Thermal and electrophoretic behavior, hydrophobicity, and some functional properties of acid-treated soy isolates. J Agric Food Chem 44:1881–1889CrossRefGoogle Scholar
  31. 31.
    Fu LH, Cao TH, Lei ZW, Chen H, Shi YG, Xu C (2016) Superabsorbent nanocomposite based on methyl acrylic acid-modified bentonite and sodium polyacrylate: fabrication, structure and water uptake. Mater Des 94:322–329CrossRefGoogle Scholar
  32. 32.
    Irani M, Ismail H, Ahmad Z (2013) Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym Test 32:502–512CrossRefGoogle Scholar
  33. 33.
    Wang WB, Wang AQ (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr Polym 77:891–897CrossRefGoogle Scholar
  34. 34.
    Fernández-Espada L (2016) Desarrollo de materiales bioplásticos proteicos con elevada capacidad de absorción de agua. PhD Thesis, Universidad de SevillaGoogle Scholar
  35. 35.
    Potorac S, Popa M, Maier V, Lisa G, Verestiuc L (2012) New hydrogels based on maleilated collagen with potential applications in tissue engineering. Mater Sci Eng C 32:236–243CrossRefGoogle Scholar
  36. 36.
    Wu Q, Yu S, Kollert M, Mtimet M, Roth SV, Gedde UW, Johansson E, Olsson RT, Hedenqvist MS (2016) Highly absorbing antimicrobial biofoams based wheat gluten and its biohydrids. ACS Sustain Chem Eng 4:2395–2404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Cuadri
    • 1
  • A. Romero
    • 2
  • C. Bengoechea
    • 2
  • A. Guerrero
    • 2
  1. 1.Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS), Campus de ‘El Carmen’Universidad de HuelvaHuelvaSpain
  2. 2.Departamento de Ingeniería Química, Facultad de QuímicaUniversidad de SevillaSevilleSpain

Personalised recommendations