Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2945–2953 | Cite as

Preparation of Avermectin/Grafted CMC Nanoparticles and Their Sustained Release Performance

  • Huayao Chen
  • Guanquan Lin
  • Hongjun Zhou
  • Xinhua Zhou
  • Hua Xu
  • Suqing Huang
Original Paper


Avermectin (AVM) is a highly efficient pesticide against a variety of insects and is widely used in agriculture. However, it is susceptible to oxidation and photolysis, resulting in instability under UV irradiation and a short half-life. Herein, sodium carboxymethyl cellulose (CMC) was grafted by styrene (St), Methyl methacrylate (MMA) and butyl acrylate (BA) respectively to prepare grafted polymer nanoparticles in application for AVM sustained released. And the influence of different grafted monomer and the grafted rate on the AVM/grafted polymer nanoparticles performance was discussed. The larger the grafted rate of St was, the larger the particle size of AVM/grafted polymer nanoparticles had with a higher drug loading rate and stronger resistance to ultraviolet light. Besides, the particle size, drug loading rate and the ability of anti-ultraviolet light of grafted CMC emulsion was also influenced by the modifying agent. While the concentration of AVM was kept the same, the acrylic esters (MMA and BA) grafted emulsion have smaller particle sizes with higher drug loading rates and stronger anti-ultraviolet ability comparing to styrene (St) grafted emulsion. The effect of different amount of St and different monomer grafted on the sustained release performance of AVM/grafted polymer was also investigated. As the grafted rate of St increased, the release rate became smaller. The release speed has a sequence of CMC-g-PBA > CMC-g-PS > CMC-g-PMMA when CMC grafted with different monomer. Their sustained release curves can be described by Korsmeyer-Peppas equation. Finally, the insect toxicity test showed that insecticide toxicity against diamondback moth (Plutella xylostella L.) has no apparent difference among the AVM and AVM/grafted polymer nanoparticles indicating that AVM/grafted polymer nanoparticles can reduce the amount of organic solution used for dissolution and prolonged its service life without decreasing its insecticide toxicity.


Avermectin Sodium carboxymethyl cellulose Graft Sustained release 



This research was supported by National Natural Science Foundation of China (Grant Nos. 21576303, 21606262), Natural Science Foundation of Guangdong Province (Grant No. 2016A030313375), Science and Technology Planning Project of Guangdong Province (Grant Nos. 2015A020209185, 2015A020209197), Science and Technology Program of Guangzhou, China (Grant Nos. 201510010150, 201707010473).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Dan J, Ma Y, Yue P, Xie Y, Zheng Q, Hu P, Zhu W, Yang M (2016) Carbohyd Polym 136:499–506CrossRefGoogle Scholar
  2. 2.
    Müller RH, Gohla S, Keck CM (2011) Eur J Pharm Biopharm 78:1–9CrossRefPubMedGoogle Scholar
  3. 3.
    Muller RH, Jacobs C, Kayser O (2011) Adv Drug Deliv Rev 47:3–19CrossRefGoogle Scholar
  4. 4.
    Shegokar R, Müller RH (2010) Int J Pharm 399:129–139CrossRefPubMedGoogle Scholar
  5. 5.
    Ghosh I, Bose S, Vippagunta R, Harmon F (2011) Int J Pharm 409:260–268CrossRefPubMedGoogle Scholar
  6. 6.
    Jacobs C, Kayser O, Müller RH (2000) Int J Pharm 196:161–164CrossRefPubMedGoogle Scholar
  7. 7.
    Dan J, Ma Y, Yue P, Xie Y, Zheng Q, Hu P, Zhu W, Yang M (1994) Nature 371:707–711CrossRefGoogle Scholar
  8. 8.
    Fent GM (2014) Encyclopedia of toxicology. Academic Press, Boston, pp 342–344CrossRefGoogle Scholar
  9. 9.
    Aisha AF, Ismail Z, Abu-Salah KM, Majid AM (2012) J Pharm Sci 101:815–825CrossRefPubMedGoogle Scholar
  10. 10.
    Chen J, Miao J, Liu M, Liu X, Bao L, Jiang Y, Wang D, Zhang Q, Zhang L (2016) Sci China Life Sci 59:634–636CrossRefPubMedGoogle Scholar
  11. 11.
    Benslimane A, Bahlouli IM, Bekkour K, Hammiche D (2016) Appl Clay Sci 132:702–710CrossRefGoogle Scholar
  12. 12.
    Lohani A, Singh G, Bhattacharya S, Hegde RR, Verma A (2015) J Drug Deliv Sci Tec 31:53–64CrossRefGoogle Scholar
  13. 13.
    Mansouri S, Khiari R, Bettaieb F, El-Gendy AA, Mhenni F (2015) J Polym Environ 23:190–198CrossRefGoogle Scholar
  14. 14.
    Liang H, Huang Q, Zhou B, He L, Lin LF, An YP, Li Y, Liu SL, Chen YJ, Li B (2015) J Mater Chem B 3:3242–3253CrossRefGoogle Scholar
  15. 15.
    Benchabane A, Bekkour K (2008) Colloid Polym Sci 286:1173–1180CrossRefGoogle Scholar
  16. 16.
    Tangboriboon N, Mulsow LO, Kunchornsup W, Sirvat A (2013) J Ceram Process Res 14:658–666Google Scholar
  17. 17.
    Roy S, Pal K, Anis A, Pramanik K, Prabhakar B (2009) Des Monomers Polym 12:483–495CrossRefGoogle Scholar
  18. 18.
    Zhang MR, Xu H, Lang MD (2015) Adv Mater Res 1120–1121:909–914CrossRefGoogle Scholar
  19. 19.
    Salama A, Abou-Zeid RE, El-Sakhawy M, El-Gendy A (2015) Int J Biol Macromol 74:155–161CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Q, Wang W, Wu J, Wang A (2012) J Appl Polym Sci 124:4424–4432Google Scholar
  21. 21.
    Shen YQ, Li X, Huang YW, Chang GJ, Cao K, Yang JX, Zhang RY, Sheng ZX, Ye X (2016) Macromolecular Res 7:1–7Google Scholar
  22. 22.
    Barkhordari S, Yadollahi M, Namazi H. Barkhordari S, Yadollahi M, Namazi H (2014) J Polym Res 21:1–9CrossRefGoogle Scholar
  23. 23.
    Alange VV, Birajdar RP, Kulkarni RV (2017) J Biomater Sci Polym Ed 28:139–161CrossRefPubMedGoogle Scholar
  24. 24.
    Salama A (2015) Mater Lett 157:243–247CrossRefGoogle Scholar
  25. 25.
    Coleman RJ, Jack KS, Perrier S, Grøndahl L (2013) Cryst Growth Des 13:4252–4259CrossRefGoogle Scholar
  26. 26.
    Maas M, Guo P, Keeney M, Yang F, Hsu TM, Fuller GG, Martin CR, Zare RN (2011) NanoLett 11:1383–1388CrossRefGoogle Scholar
  27. 27.
    Campos EVR, Oliveira JLD, Fraceto LF, Singh B (2015) Agron Sustain Dev 35:47–66CrossRefGoogle Scholar
  28. 28.
    Li FJ, Zhu AP, Song XL, Ji LJ (2014) Colloids Surf B Biointerfaces 115:377–383CrossRefPubMedGoogle Scholar
  29. 29.
    Xu LJ, Chu W, Gan L (2015) Chem Eng J 263:435–443CrossRefGoogle Scholar
  30. 30.
    Chen HY, Lin YS, Zhou HJ, Zhou XH, Gong S, Xu H (2016) Rsc Adv 6:114714–114721CrossRefGoogle Scholar
  31. 31.
    Gupta RK, Ionescu M, Wan X, Radojcic D, Petroviƈ ZS (2015) J Polym Environ 23:261–268CrossRefGoogle Scholar
  32. 32.
    Mallakpour S, Tirgir F, Sabzalian MR (2010) J Polym Environ 18:685–695CrossRefGoogle Scholar
  33. 33.
    Liu Z, Qie R, Li W, Hong N, Li Y, Li C, Wang R, Shi Y, Guo X, Jia X (2017) New J Chem 14:3190–3195CrossRefGoogle Scholar
  34. 34.
    Sivagurunathan P, Dharmalingam K, Ramachandran K (2006) J Solution Chem 35:1467–1475CrossRefGoogle Scholar
  35. 35.
    Higuchi T (1963) J Pharm Sci 52:1145–1149CrossRefPubMedGoogle Scholar
  36. 36.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas N (1983) Int J Pharm 15:25–35CrossRefGoogle Scholar
  37. 37.
    Ogieglo W, Wormeester H, Wessling M, Benes NE (2013) Polymer 54:341–348CrossRefGoogle Scholar
  38. 38.
    Lagorce-Tachon A, Karbowiak T, Simon JM, Gougeon R, Bellat JP (2014) J Agr Food Chem 62:9180–9185CrossRefGoogle Scholar
  39. 39.
    Sharma J, Kaith BS, Bhatti MS (2017) J Polym Environ 1–14Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringZhongkai University of Agriculture and EngineeringGuangzhouPeople’s Republic of China
  2. 2.Guangzhou Key Lab for Efficient Use of Agricultural ChemicalsGuangzhouPeople’s Republic of China

Personalised recommendations