Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 3060–3068 | Cite as

Copolymer P(BS-co-LA) Enhanced Compatibility of PBS/PLA Composite

  • Wei Zhang
  • Ying Xu
  • Pingli Wang
  • Jian Hong
  • Jun Liu
  • Junhui Ji
  • Paul K. Chu
Original Paper

Abstract

The copolymer P(BS-co-LA) with various block chains are synthesized and employed as the interface linker in poly(butyl succinate) (PBS)/polylactic acid (PLA) blends to enhance the compatibility of PBS and PLA. The crystallization and rheological properties are determined by various methods, as well as the mechanical properties. The results indicate that the addition of P(BS-co-LA) decreases the crystallization temperature and degree of crystallinity in the PBS/PLA composite. The P(BS-co-LA) with a long-block chain remarkably enhances the compatibility of PBS/PLA composites than short block chains, and the PBS/PLA/P(BS-hb-LA) composites show great elongation at break and impact strength. Besides, the crystallinity and the rate of crystallization are increased, which are also observed by the X-ray diffraction. All approaches lead to the same result that P(BS-co-LA) with the long block chain is an excellent compatibility agent to enhance mechanical properties of the PBS/PLA composites.

Keywords

Polylactic acid Poly(butyl succinate) Compatibility Composite 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC 51473175 and 51603212); National key research and development program (2016YFC1000900) and Youth Innovation Promotion Association CAS, City University of Hong Kong Strategic Research Grant (SRG) No. 7004188, and Hong Kong Research Grants Council (RGC) No. CityU 112212 .

References

  1. 1.
    Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  2. 2.
    Carstens MG, van Nostrum CF, Ramzi A, Meeldijk JD, Verrijk R, de Leede LL, Crommelin DJ, Hennink WE (2005) Langmuir 21:11446–11454CrossRefPubMedGoogle Scholar
  3. 3.
    Gross RA, Kalra B (2002) Science 297:803–807CrossRefPubMedGoogle Scholar
  4. 4.
    Inkinen S, Hakkarainen M, Albertsson A-C et al (2011) Biomacromolecules 12:523–532CrossRefPubMedGoogle Scholar
  5. 5.
    Kim MS, Dayananda K, Choi EK, Park HJ, Kim JS, Lee DS (2009) Polymer 50:2252–2257CrossRefGoogle Scholar
  6. 6.
    Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Macromolecules 41:1774–1784CrossRefGoogle Scholar
  7. 7.
    Tan L, Chen Y, Zhou W, Nie H, Li F, He X (2010) Polym Degrad Stabil 95:1920–1927CrossRefGoogle Scholar
  8. 8.
    Azim H, Dekhterman A, Jiang Z, Gross RA (2006) Biomacromolecules 7:3093–3097CrossRefPubMedGoogle Scholar
  9. 9.
    Nakajima H, Fujiwara T, Lee CW, Kimura Y (2011) Biomacromolecules 12:4036–4043CrossRefPubMedGoogle Scholar
  10. 10.
    Wiggins JS, Hassan MK, Mauritz KA, Storey RF (2006) Polymer 47:1960–1969CrossRefGoogle Scholar
  11. 11.
    De Jong S, Arias ER, Rijkers D, Van Nostrum C, Kettenes-Van den Bosch J., Hennink W (2001) Polymer 42:2795–2802CrossRefGoogle Scholar
  12. 12.
    Lyoo W, Kim J, Yoon W, Ji B, Choi J, Cho J, Lee J, Yang S, Yoo Y (2000) Polymer 41:9055–9062CrossRefGoogle Scholar
  13. 13.
    Cao H, Kuboyama N (2010) Bone 46:386–395CrossRefPubMedGoogle Scholar
  14. 14.
    Wang G, Liu S-J, Ueng SW-N, Chan E-C (2004) Int J Pharm 273:203–212CrossRefPubMedGoogle Scholar
  15. 15.
    Montjovent M-O, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C, Zambelli P-Y, Bourban P-E, Applegate LA, Pioletti DP (2008) Bone 42:554–564CrossRefPubMedGoogle Scholar
  16. 16.
    Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H (2005) Biomaterials 26:73–79CrossRefPubMedGoogle Scholar
  17. 17.
    Wang H, Ji J, Zhang W, Zhang Y, Jiang J, Wu Z, Pu S, Chu PK (2009) Acta Biomater 5:279–287CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H, Ji J, Zhang W, Wang W, Zhang Y, Wu Z, Zhang Y, Chu PK (2010) Acta Biomater 6:154–159CrossRefPubMedGoogle Scholar
  19. 19.
    Kalfa D, Bel A, Chen-Tournoux A, Della Martina A, Rochereau P, Coz C, Bellamy V, Bensalah M, Vanneaux V, Lecourt S (2010) Biomaterials 31:4056–4063CrossRefPubMedGoogle Scholar
  20. 20.
    Smith MJ, White KL Jr., Smith DC, Bowlin GL (2009) Biomaterials 30:149–159CrossRefPubMedGoogle Scholar
  21. 21.
    Hench LL, Polak JM (2002) Science 295:1014–1017CrossRefPubMedGoogle Scholar
  22. 22.
    Willerth SM, Sakiyama-Elbert SE (2007) Adv Drug Deliver Rev 59:325–338CrossRefGoogle Scholar
  23. 23.
    Kowalczyk M, Pluta M, Piorkowska E, Krasnikova N (2012) J Appl Polym Sci 125:4292–4301CrossRefGoogle Scholar
  24. 24.
    Lebourg M, Antón JS, Ribelles J (2008) Eur Polym J 44:2207–2218CrossRefGoogle Scholar
  25. 25.
    Shibata M, Inoue Y, Miyoshi M (2006) Polymer 47:3557–3564CrossRefGoogle Scholar
  26. 26.
    Sionkowska A (2011) Prog Polym Sci 36:1254–1276CrossRefGoogle Scholar
  27. 27.
    Bhatia A, Gupta RK, Bhattacharya SN, Choi H (2007) Korea-Aust Rheol J 19:125–131Google Scholar
  28. 28.
    Yokohara T, Yamaguchi M (2008) Eur Polym J 44:677–685CrossRefGoogle Scholar
  29. 29.
    Thakur KA, Kean RT, Hall ES, Kolstad JJ, Lindgren TA, Doscotch MA, Siepmann JI, Munson EJ (1997) Macromolecules 30:2422–2428CrossRefGoogle Scholar
  30. 30.
    Chen G-X, Kim H-S, Kim E-S, Yoon J-S (2005) Polymer 46:11829–11836CrossRefGoogle Scholar
  31. 31.
    Kasperczyk J (1995) Macromolecules 28:3937–3939CrossRefGoogle Scholar
  32. 32.
    Kuwabara K, Gan Z, Nakamura T, Abe H, Doi Y (2002) Biomacromolecules 3:1095–1100CrossRefPubMedGoogle Scholar
  33. 33.
    Huang S, Li H, Jiang S, Chen X, An L (2011) Polymer 52:3478–3487CrossRefGoogle Scholar
  34. 34.
    Woo EM, Chang L (2011) Polymer 52:6080–6089CrossRefGoogle Scholar
  35. 35.
    Shi X, Aimi K, Ito H, Ando S, Kikutani T (2005) Polymer 46:751–760CrossRefGoogle Scholar
  36. 36.
    Supthanyakul R, Kaabbuathlong N, Chirachanchai S (2016) Polymer 105:1–9CrossRefGoogle Scholar
  37. 37.
    Tsuji H, Shimizu K, Sakamoto Y, Okumura A (2011) Polymer 52:1318–1325CrossRefGoogle Scholar
  38. 38.
    Lee S, Bluemle MJ, Bates FS (2010) Science 330:349–353CrossRefPubMedGoogle Scholar
  39. 39.
    Blomqvist J, Mannfors B, Pietilä L-O (2002) Polymer 43:4571–4583CrossRefGoogle Scholar
  40. 40.
    Bouapao L, Tsuji H, Tashiro K, Zhang J, Hanesaka M (2009) Polymer 50:4007–4017CrossRefGoogle Scholar
  41. 41.
    Sinha Ray S, Makhatha ME (2009) Polymer 50:4635–4643CrossRefGoogle Scholar
  42. 42.
    Tsuji H, Wada T, Sakamoto Y, Sugiura Y (2010) Polymer 51:4937–4947CrossRefGoogle Scholar
  43. 43.
    Han CD, Kim JK (1993) Polymer 34:2533–2539CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of Physics & Materials ScienceCity University of Hong KongKowloonChina

Personalised recommendations