Skip to main content
Log in

Copolymer P(BS-co-LA) Enhanced Compatibility of PBS/PLA Composite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The copolymer P(BS-co-LA) with various block chains are synthesized and employed as the interface linker in poly(butyl succinate) (PBS)/polylactic acid (PLA) blends to enhance the compatibility of PBS and PLA. The crystallization and rheological properties are determined by various methods, as well as the mechanical properties. The results indicate that the addition of P(BS-co-LA) decreases the crystallization temperature and degree of crystallinity in the PBS/PLA composite. The P(BS-co-LA) with a long-block chain remarkably enhances the compatibility of PBS/PLA composites than short block chains, and the PBS/PLA/P(BS-hb-LA) composites show great elongation at break and impact strength. Besides, the crystallinity and the rate of crystallization are increased, which are also observed by the X-ray diffraction. All approaches lead to the same result that P(BS-co-LA) with the long block chain is an excellent compatibility agent to enhance mechanical properties of the PBS/PLA composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  2. Carstens MG, van Nostrum CF, Ramzi A, Meeldijk JD, Verrijk R, de Leede LL, Crommelin DJ, Hennink WE (2005) Langmuir 21:11446–11454

    Article  CAS  PubMed  Google Scholar 

  3. Gross RA, Kalra B (2002) Science 297:803–807

    Article  CAS  PubMed  Google Scholar 

  4. Inkinen S, Hakkarainen M, Albertsson A-C et al (2011) Biomacromolecules 12:523–532

    Article  CAS  PubMed  Google Scholar 

  5. Kim MS, Dayananda K, Choi EK, Park HJ, Kim JS, Lee DS (2009) Polymer 50:2252–2257

    Article  CAS  Google Scholar 

  6. Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Macromolecules 41:1774–1784

    Article  CAS  Google Scholar 

  7. Tan L, Chen Y, Zhou W, Nie H, Li F, He X (2010) Polym Degrad Stabil 95:1920–1927

    Article  CAS  Google Scholar 

  8. Azim H, Dekhterman A, Jiang Z, Gross RA (2006) Biomacromolecules 7:3093–3097

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima H, Fujiwara T, Lee CW, Kimura Y (2011) Biomacromolecules 12:4036–4043

    Article  CAS  PubMed  Google Scholar 

  10. Wiggins JS, Hassan MK, Mauritz KA, Storey RF (2006) Polymer 47:1960–1969

    Article  CAS  Google Scholar 

  11. De Jong S, Arias ER, Rijkers D, Van Nostrum C, Kettenes-Van den Bosch J., Hennink W (2001) Polymer 42:2795–2802

    Article  Google Scholar 

  12. Lyoo W, Kim J, Yoon W, Ji B, Choi J, Cho J, Lee J, Yang S, Yoo Y (2000) Polymer 41:9055–9062

    Article  CAS  Google Scholar 

  13. Cao H, Kuboyama N (2010) Bone 46:386–395

    Article  CAS  PubMed  Google Scholar 

  14. Wang G, Liu S-J, Ueng SW-N, Chan E-C (2004) Int J Pharm 273:203–212

    Article  CAS  PubMed  Google Scholar 

  15. Montjovent M-O, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C, Zambelli P-Y, Bourban P-E, Applegate LA, Pioletti DP (2008) Bone 42:554–564

    Article  CAS  PubMed  Google Scholar 

  16. Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H (2005) Biomaterials 26:73–79

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Ji J, Zhang W, Zhang Y, Jiang J, Wu Z, Pu S, Chu PK (2009) Acta Biomater 5:279–287

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Ji J, Zhang W, Wang W, Zhang Y, Wu Z, Zhang Y, Chu PK (2010) Acta Biomater 6:154–159

    Article  CAS  PubMed  Google Scholar 

  19. Kalfa D, Bel A, Chen-Tournoux A, Della Martina A, Rochereau P, Coz C, Bellamy V, Bensalah M, Vanneaux V, Lecourt S (2010) Biomaterials 31:4056–4063

    Article  CAS  PubMed  Google Scholar 

  20. Smith MJ, White KL Jr., Smith DC, Bowlin GL (2009) Biomaterials 30:149–159

    Article  CAS  PubMed  Google Scholar 

  21. Hench LL, Polak JM (2002) Science 295:1014–1017

    Article  CAS  PubMed  Google Scholar 

  22. Willerth SM, Sakiyama-Elbert SE (2007) Adv Drug Deliver Rev 59:325–338

    Article  CAS  Google Scholar 

  23. Kowalczyk M, Pluta M, Piorkowska E, Krasnikova N (2012) J Appl Polym Sci 125:4292–4301

    Article  CAS  Google Scholar 

  24. Lebourg M, Antón JS, Ribelles J (2008) Eur Polym J 44:2207–2218

    Article  CAS  Google Scholar 

  25. Shibata M, Inoue Y, Miyoshi M (2006) Polymer 47:3557–3564

    Article  CAS  Google Scholar 

  26. Sionkowska A (2011) Prog Polym Sci 36:1254–1276

    Article  CAS  Google Scholar 

  27. Bhatia A, Gupta RK, Bhattacharya SN, Choi H (2007) Korea-Aust Rheol J 19:125–131

    Google Scholar 

  28. Yokohara T, Yamaguchi M (2008) Eur Polym J 44:677–685

    Article  CAS  Google Scholar 

  29. Thakur KA, Kean RT, Hall ES, Kolstad JJ, Lindgren TA, Doscotch MA, Siepmann JI, Munson EJ (1997) Macromolecules 30:2422–2428

    Article  CAS  Google Scholar 

  30. Chen G-X, Kim H-S, Kim E-S, Yoon J-S (2005) Polymer 46:11829–11836

    Article  CAS  Google Scholar 

  31. Kasperczyk J (1995) Macromolecules 28:3937–3939

    Article  CAS  Google Scholar 

  32. Kuwabara K, Gan Z, Nakamura T, Abe H, Doi Y (2002) Biomacromolecules 3:1095–1100

    Article  CAS  PubMed  Google Scholar 

  33. Huang S, Li H, Jiang S, Chen X, An L (2011) Polymer 52:3478–3487

    Article  CAS  Google Scholar 

  34. Woo EM, Chang L (2011) Polymer 52:6080–6089

    Article  CAS  Google Scholar 

  35. Shi X, Aimi K, Ito H, Ando S, Kikutani T (2005) Polymer 46:751–760

    Article  CAS  Google Scholar 

  36. Supthanyakul R, Kaabbuathlong N, Chirachanchai S (2016) Polymer 105:1–9

    Article  CAS  Google Scholar 

  37. Tsuji H, Shimizu K, Sakamoto Y, Okumura A (2011) Polymer 52:1318–1325

    Article  CAS  Google Scholar 

  38. Lee S, Bluemle MJ, Bates FS (2010) Science 330:349–353

    Article  CAS  PubMed  Google Scholar 

  39. Blomqvist J, Mannfors B, Pietilä L-O (2002) Polymer 43:4571–4583

    Article  CAS  Google Scholar 

  40. Bouapao L, Tsuji H, Tashiro K, Zhang J, Hanesaka M (2009) Polymer 50:4007–4017

    Article  CAS  Google Scholar 

  41. Sinha Ray S, Makhatha ME (2009) Polymer 50:4635–4643

    Article  CAS  Google Scholar 

  42. Tsuji H, Wada T, Sakamoto Y, Sugiura Y (2010) Polymer 51:4937–4947

    Article  CAS  Google Scholar 

  43. Han CD, Kim JK (1993) Polymer 34:2533–2539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC 51473175 and 51603212); National key research and development program (2016YFC1000900) and Youth Innovation Promotion Association CAS, City University of Hong Kong Strategic Research Grant (SRG) No. 7004188, and Hong Kong Research Grants Council (RGC) No. CityU 112212 .

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xu or Pingli Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xu, Y., Wang, P. et al. Copolymer P(BS-co-LA) Enhanced Compatibility of PBS/PLA Composite. J Polym Environ 26, 3060–3068 (2018). https://doi.org/10.1007/s10924-018-1180-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1180-0

Keywords

Navigation